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Abstrac t. States with explicit quantum character, such as squeezed vacuum
and bright squeezed light, as well as coherent states and incoherent super-
positions of coherent states were generated and analysed by tomographical
methods. Wigner functions, photon-number distributions, density matrices
and phase distributions were reconstructed with high accuracy. Features such
as photon number oscillations, sub-Poissonian and super-Poissonian photon
statistics, bifurcations of the phase distribution, and loss of coherence were
observed, demonstrating the usefulness of quantum state reconstruction as an
analysing tool in quantum optics experiments.

1. Introd uc tion
Quantum state reconstruction (QSR) is based on extracting the maximum

accessible information on a state and processing it by appropriate algorithms to
obtain its phase-space distribution function or density matrix [1]. Historically,
states of the light ® eld were the ® rst on which QSR was performed. While the
existence of non-classical states of the light ® eld had been ® rmly established by the
mid-1980s [2], the advent of QSR techniques has opened up a new perspective of
such states. Initial investigations comprised pulsed squeezed vacuum [3, 4] and
coherent states [5] and the photon statistics of pulsed semiconductor laser diodes
[6]. QSR of light was subsequently extended to the continuous-wave regime,
including squeezed vacuum with a high degree of quantum noise reduction [7, 8],
and bright squeezed light [9]. Because of the rapid development of theoretical and
numerical tools for quantum state analysis [10± 14] on the one hand and modern
data recording and processing equipment on the other hand, quasi-real-time
quantum state observation is now possible. In this paper we review the results
of QSR methods applied to non-classical light generated by an optical parametric
ampli® er (OPA) and to states of the light ® eld with various degrees of coherence.

2. Hom odyne tom ograph y
To reconstruct a quantum state, a large number of measurements on an

ensemble of identically prepared states has to be performed [15]. For the light
® eld this is accomplished by balanced homodyning [16]. As shown later in ® gure 1,
the signal wave is spatially overlapped at a 50± 50 beam splitter with a strong
coherent oscillator of nearly the same frequency. Subtracting the photocurrents of
two detectors at the two beam-splitter output ports yields a current i- , which is
directly proportional to the measurement result of the signal’s electric ® eld
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operator E(µ) ~ Xµ = X cosµ+ Y sin µ at a speci® c phase angle µ, where
X = (a + a² ) /21/2 and Y = (a - a² ) /21/2i are the non-commuting quadrature
operators. The angle µ is determined by the relative phase between the signal
wave and the local oscillator. It is varied linearly in time by a moveable mirror in
the beam path of the local oscillator. In this way the rapid oscillation of the free
time evolution of the electric ® eld operator E(t) ~ X cos ( x t) + Y sin ( x t) is
converted to a controlled phase dependence E(µ) . Thus, assuming that the signal
state (i.e. its density matrix) emitted by the source does not change during the
measurement time, i- (t) furnishes an image of the time evolution of the signal’s
electric ® eld with the corresponding ¯ uctuations at each phase angle.

Although the recording of this noise current conveys an appealing depiction of
the signal’s quantum state, a concise description is obtained by determining the
phase-space distribution functions and statistics in the photon number basis. To
this end the recorded noise trace is divided into sections [µ, µ+ D µ], µ Î [0, 2p ], in
each of which the statistical distribution of the ¯ uctuations of i- is formed, that is
the probability distribution Pµ(xµ) of the eigenvalues xµ of the quadrature Xµ.
These distributions are the projection integrals of the signal state’s Wigner
function W (x,y) in rotated coordinates:

Pµ(xµ) = ò
¥

- ¥
W (xµ cos µ- yµ sin µ,xµ sin µ+ yµ cosµ) dyµ, (1)

where yµ = - xsin µ+ y cos µ. The Wigner function is obtained from the set
{Pµ(xµ)} by backprojection via use of the inverse Radon transform [10].

The alternative reconstruction method that we apply below yields the elements
q nm of the density matrix in the Fock basis via integration of {Pµ} over a set of
pattern functions which have been described in detail in [11]. This method does
not introduce any data ® ltering and o� ers in principle the possibility of `on-line’
reconstruction, that is to process each data point directly after being recorded.

3. The expe rim ent
A schematic diagram of the experiment is shown in ® gure 1. As laser source we

employ a miniature monolithic Nd-doped yttrium aluminium garnet laser
(1064nm; 500 mW; Lightwave model 122). To reduce the excess noise of the
laser due to the relaxation oscillations, the laser beam traverses a high-® nesse
(F = 10 400) mode-cleaning cavity with a linewidth of 170 kHz. It is then split into
three parts and directed as the local oscillator to the homodyne detector, to the
frequency doubler to generate the pump wave for the OPA, and to injection-seed
the OPA. Filter cavity and frequency doubler lengths are locked to the laser
frequency by a frequency modulation technique. Three isolators (not shown in the
schematic diagram) prevent back re¯ ection of the laser light from the ® lter cavity
into the laser, from the standing-wave frequency doubler into the ® lter cavity or
from the OPA into the frequency doubler.

The signal wave emitted from the OPA cavity and the local oscillator wave are
Gaussian TEM00 waves. Their waists are carefully matched to 99%at the beam
splitter of the homodyne detector. The basic property of the homodyne detection
system is a narrow-band detection of the electric ® eld ¯ uctuations at frequencies
o� set from the local oscillator frequency w by X = 1.5± 2.5 MHz, rather than at dc,
to avoid technical noise at low frequencies. The photodetectors contain passivated
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Epitaxx InGaAs photodiodes with removed front covers, exhibiting a quantum
e� ciency of 97%. The photocurrents are ampli® ed by transimpedance ampli® ers
with more than 30 MHz bandwidth. One part of the di� erence photocurrent is
directed to a spectrum analyser for variance measurements; the other part is
further ampli® ed by a low-noise 40 dB gain ampli® er and then mixed with an
electrical oscillator of frequency X . The intermediate-frequency output of the
mixer is further ampli® ed and low-pass ® ltered by a SRS 560 low-noise ampli® er.
The bandwidth is set to 100 kHz, de® ning the bandwidth within which the
¯ uctuations of i- are detected. They are subsequently recorded by a 12 bit high-
speed JMTEC analogue-to-digital (A/D) board. A trace of i- with the phase µ

scanned over 2p in 0.2 s contains about 500000 points. Immediately after the data
are stored in the on-board memory of the A/D converter, the probability
distributions are sampled with 128 angle bins and 256 amplitude bins, and the
numerical reconstructions are performed resulting in an overall reconstruction
time of about 20 s.

3.1. Squeezed vacuum generation by a subthreshold optical parametric oscillator
The OPA employed consists of a monolithic standing-wave cavity, made of

magnesium-oxide-doped lithium niobate. The OPA is operated in degenerate
mode, that is the resonance frequency of the cavity mode is half the frequency of
the pump wave, and the parametric gain of the nonlinear crystal is maximized via
its temperature for the given pump frequency. The excellent free-running fre-
quency stability of the laser, the dimensional stability of the OPA cavity and its
broad linewidth of C = 17 MHz (half-width at half-maximum) allow stable opera-
tion of the experiment without active stabilization of the laser frequency to the
OPA cavity resonance, relative drifts being less than 10 MHz min- 1.

The pump power beyond which the OPA becomes an oscillator is
Pth = 28 mW. Operated below threshold, the OPA is a source of squeezed vacuum.
The predicted variances of the quantum ¯ uctuations of the two quadratures with
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Figure 1. Experimental scheme for generating bright squeezed light and squeezed
vacuum with an OPA: EOM, electro-optic modulator; DM, dichroic mirror; SHG,
second-harmonic generator; Nd: YAG laser, Nd-doped yttrium aluminium garnet
laser; HR, high re¯ ector.



minimum (squeezed)/maximum (antisqueezed) noise have a Lorentzian spectrum
given relative to the variance of vacuum by [17]

Var [Xsq/as( X )] = 1 7 h e
4(Pp /Pth)1/2

[1 6 (Pp /Pth) 1/2]2 + ( X /C )2 , (2)

where Pp is the pump power and h e = To /( To + THR + A) = 0.88 is the cavity
escape e� ciency, with To = 2.1%being the transmission of the output mirror,
THR < 0.05%the transmission of the high re¯ ector (HR) mirror, and A = 0.3%the
internal losses. With these values a maximum of - 7.6 dB (0.18) noise reduction
below the vacuum (shot) noise level should be obtainable, for our detection
e� ciency of 94 6 2%. As shown in ® gure 2, in practice we reach a maximum
value of - 6.0 6 0.25dB (0.25). Together with [18], this is the highest value for
quadrature squeezing published so far. We believe that the discrepancy compared
with the maximum achievable value is mainly due to the classical noise of the
pump wave which is not completely removed by the ® ltering cavity. This is
indicated by the presence of modulation signals of the frequency doubler in the
OPA output spectrum and by the degradation of squeezing when the pump power
approaches the OPO threshold. In this regime the measured values deviate from
equation (2).

3.2. Bright squeezed light generation by parametric ampli® cation and
deampli® cation

A central aspect of our reconstruction experiments is the generation of bright
squeezed light, that is with a coherent excitation in the sidebands at the frequency
X where the measurements of the squeezed vacuum were performed. An e� cient
method to achieve this consists of using the OPA in a dual-port con® guration [19];
we inject a phase-modulated 1064nm wave into the HR mirror and extract the
bright squeezed light from the output port, whose transmissivity To @ THR.

2210 G. Breitenbach and S. Schiller

Figure 2. Squeezed vacuum from the monolithic OPA: trace (i), Var (Xµ) against the
phase of the local oscillator µ scanned over 2p in 200 ms; trace (iii), Var (Xµ) with
the phase µ ® xed manually for minimum noise resulting in an averaged variance
Var (Xsq) = 6 6 0.25 dB (0.25) below the vacuum level. The shot noise level is the
average of trace (ii). The resolution bandwidth was 100 kHz, and the video
bandwidth 1 kHz.



Consider ® rst the carrier (power Pin at x ) of the seed wave, on resonance with
the cavity, and let Ps = 4PinToTHR /( To + THR + A)2 be the output power trans-
mitted by the OPA cavity through the To mirror in absence of the pump. Once the
pump is turned on, the output power is gPs with a gain g which depends on the
power and the phase of the pump. Applying the standard treatment of nonlinear
optical resonators, the strongest deampli® cation factor is found as

gmin =
1

[1 + (Pp /Pth)1/2]2
. (3)

Note that it is independent of the seed power and not explicitly dependent on the
mirror transmissivities. Figure 3 (a) shows agreement of this expression with the
experimentally measured gmin. The maximum ampli® cation gmax, on the other
hand, depends on seed power since it is limited by depletion of the pump. At a
® xed seed power the measured maximum gain as a function of pump power is
shown in ® gure 3 (b). By reducing the seed power the ampli® cation factor can be
increased. The inset of ® gure 3 (b) shows this dependence with Pp = 0.985Pth.
Ampli® cation factors up to 3260 were obtained. With a pump power exactly at
threshold, the maximum gain is given by gmax = (4h ePth /Ps)

2/3.
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Figure 3. Parametric (a) deampli® cation and (b) ampli® cation of a weak signal injected
into the OPA: (Ð Ð ), theory; (Ê ), measured values. The signal input power in (b)
amounted to Pin = 40 m W. The inset shows the maximum ampli® cation against
signal input power at constant pump power Pp < Pth.



Turning to the quantum ¯ uctuations, we note and con® rmed experimentally,
that the spectrum of the quantum noise around X is not changed by the injection of
the 100 pW seed beam, since the seed wave’s ¯ uctuations at X are at the vacuum
limit owing to its low power the use of the ® lter cavity and because THR ! TO. To
realize a coherent excitation at the measurement frequency X , we have to transfer a
part of the optical power of the seeding input to sidebands at X . This is
accomplished by a phase modulator placed before the OPA cavity driven at
frequency X with a modulation index b < 1 (electro-optic modulation of the
nonlinear crystal is alsopossible). The amplitude b E0 of the sidebands is thus deter-
mined both by the relative phase u of the pump wave and by the modulation index.

The Fourier components of the output ® eld’s quadratures can be written as

X( X Â ) = E0 d ( X Â ) + b E0[d ( X Â - X ) - d ( X Â + X )]+ Xn( X Â ) ,
Y ( X Â ) = Y n( X Â ) .

(4)

Xn and Y n are the contributions stemming from the quantum noise entering and
leaving through the OPA’s output coupler. Their variances are functions of the
optical phase u between seed and pump wave, since the latter ampli® es the in-
phase ¯ uctuations and deampli® es the out-of-phase ¯ uctuations. By controlling
the phase u by a mirror attached to a piezoelectric actuator and the modulation
index b , light of arbitrary amplitude squeezed in any arbitrary quadrature can be
generated.

The homodyne detector output current i- is mixed with an electrical local
oscillator ~ sin ( X t + y ) , phase locked to the modulation source, and then low-pass
® ltered with 100 kHz bandwidth. The resulting current is

i X (µ, t) ~ {[Xn( X , t) + Xn(- X , t)]cos µ- [Y n( X , t) + Y n(- X , t)]sin µ}
´ sin y + {[2b E0 + Xn( X , t) - Xn(- X , t)]sin µ+ [Y n( X , t)
- Y n(- X , t)]cos µ}cos y ,

where Xn( X , t) and Y n( X , t) are the quantum ¯ uctuations in a 100 kHz wide band
centred at X , transferred to dc. Setting the phase of the electric local oscillator such
that cos y = 1 and varying the local oscillator phase µ linearly in time, the mean
homodyne current k i X (µ, t) l ~ 2b E0 sin µ oscillates harmonically and exhibits in
addition phase-dependent ¯ uctuations with the chosen bandwidth of 100kHz.

4. Determ in ing the quantum state
4.1. Measurements of quantum noise

The ® rst step in QSR consists in determining the standard deviation D Evac of
the electric ® eld of the vacuum state, to use it for the calibration of the noise of all
generated states. Its value is obtained by a measurement of the noise current i X

with the homodyne detector signal input blocked. It serves as the unit of
measurement for the electric ® eld E0 of the signal wave (or more precisely of its
side bands e0 = 2b E0 at X ).

A useful test of the measurement system is the veri® cation of the independence
of the variance of the coherent states’ electric ® eld from the degree of coherent
excitation. This is demonstrated by the traces shown in ® gure 4. The angle-
independent variance is equal to ( D Evac)

2 for all three traces. The methods
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employed in our experiment allow us to detect coherent states of almost arbitrary
® eld strength as long as the power of the signal beam is small in comparison with
the local oscillator power. Accurate reconstructions are, however, limited to states
with average photon numbers up to 40 (e0 < 9) , since the resolution of the A/D
board is limited.

Figure 5 shows the recorded noise traces of di� erent squeezed states generated
by the OPA as well as the reference trace of the vacuum. ² The minimum and
maximum variances for the corresponding quadrature probability distributions Pµ

are Var [Xsq( X )] = - 6 dB (0.25-fold noise suppression) and Var [Xas( X )] = 14.3dB
(26.9-fold noise enhancement) for the squeezed vacuum, in agreement with the
measurement in ® gure 2, Var [Xsq( X )] < - 5 dB, Var [Xas( X )] < 13 dB for the
bright squeezed states.

Not only the variance, the second-order statistical moment, can take values
below that of the vacuum ® eld, but also the higher-even-order statistical moments,
as Hong and Mandel [20] predicted in 1985. Having sampled the complete
distributions {Pµ}, this higher-order squeezing of a quantum ® eld is readily
veri® ed in our experiment up to the ten’ths statistical moment.

4.2. Phase-space distributions
Applying the inverse Radon transform to the sets of probability distributions

{Pµ} yields the Wigner functions presented in ® gure 6. They are in agreement with
the theoretical expression for bright non-minimum-uncertainty squeezed states,
given by
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Figure 4. Noise traces iX for three coherent states with di� erent amplitudes e0. Average
photon numbers k nl = e2

0 /2 from top to bottom are equal to 4.2, 25.2 and 924.5.

² A video, showing the time evolutions of the quantum states presented here, can be
obtained from the authors.



W (x,y) =
1

p ab
exp - (x - e0 cos u ) 2

a2 - (y - e0 sin u )2

b2( ) , (5)

where x = x0 cos u + xp /2 sin u , y = - x0 sin u + xp /2 cos u are the phase-space
coordinates used in standard textbooks, and a = {Var [Xsq( X )]}1/2, b =
{Var [Xas( X )]}1/2 are the minimum and maximum standard deviations of the
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Figure 5. Noise traces i X of the generated quantum states as a function of time (a.u.,
arbitrary units). From the top, vacuum state, squeezed vacuum state, phase-
squeezed state, state squeezed in the u = 48ë quadrature, and amplitude-squeezed
state. The degree of squeezing was - 6 dB (0.25) for the squeezed vacuum, between
- 5.2 and - 4.9 dB (between 0.3 and 0.32) for the bright squeezed states. The degrees
of antisqueezing amounted to 12± 14 dB (15.8± 26.9).
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Figure 6. Reconstructed Wigner functions for the states in ® gure 5. From the top,
vacuum state, squeezed vacuum state, phase-squeezed state, state squeezed in the
u = 48 ë quadrature, and amplitude-squeezed state. The ripples at the base of all
reconstructions are due to the ® nite number of angular divisions of the noise trace.



quadrature ¯ uctuations. For the bright squeezed light it can be clearly seen how a
change in the angle u between pump and OPA input signal corresponds to a
rotation of the squeezed Wigner function in phase space.

It is important to note that, owing to non-unity detection e� ciency h , the above
reconstruction does not exactly yield the Wigner function but the s-parametrized
phase-space distribution function W (x,y,s) [21], with the parameter s given by
s = 1 - 1 /h , ( W (x,y,- 1) represents the Q function, and W (x,y,0) the original
Wigner distribution). Therefore the quantum e� ciency of the detection system is a
crucial issue in any QSR experiment [22]. For our set-up it amounted to 94 6 2%,
resulting in an s parameter of - 0.064. A second issue to be aware of when using the
inverse Radon transform is that it contains a ® ltering process within the numerical
algorithm which reduces the faithfulness of the reconstruction. If the ® ltering
procedure is based on a quadratic regularization method with factor e as described
in [23], the in¯ uence of the data ® ltering can be determined quantitatively. It
corresponds to a convolution of the Wigner function with a Gaussian of width
(2e )1/2. Since detection losses result in a convolution of the Wigner function with a
Gaussian as well, both in¯ uences are directly comparable. In our reconstructions
the s parameter changed from - 0.064 (detection loss) to - 0.072 (detection
loss + ® ltering). Thus, distortions due to the ® ltering process are negligible in
our experiment and our reconstructed distributions are in fact very close to the
states’ Wigner function.

4.3. Density matrices in the Fock basis
The density matrix in the Fock representation is gained from the measured

distributions via the integral

q nm = ò dµdxµ Pµ(xµ) exp [i(n - m)µ]fnm(xµ) , (6)

where the fnm are the pattern functions described in [11]. The reconstructed
density matrix of the squeezed vacuum is shown in ® gure 7. The odd± even
oscillations in the diagonal and even o� -diagonals are a striking evidence of the
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Figure 7. Reconstructed density matrix of the squeezed vacuum state in ® gure 5. The
diagonal and the near o� -diagonals exhibit strong odd± even oscillations, which can
be explained by quantum interference in phase space. Every other o� -diagonal is
zero, owing to the inversion symmetry of the state’ s phase-space distribution.



two-photon down-conversion process [8]. A detailed analysis of the oscillatory
character of the density matrix elements of non-minimum-uncertainty squeezed
vacuum states, and its relation to phase space interference [24] can be found in
[25]. An estimate for the upper limit of the experimental reconstruction error of
0.01 is given by the largest density matrix element (except q 00) of the reconstructed
vacuum state. Within this error limit the reconstructed density matrix agrees with
its theoretical estimation up to n = 12.

The photon-number distribution of the squeezed vacuum state, given by the
diagonal elements q nn is, as expected, strongly super-Poissonian, that is
Var (n) > k nl . In general, for squeezed states that exhibit large antisqueezing
b2 @ 1 and a relatively weak coherent excitation e0, such as those presented in
the previous paragraph, the photon statistics are super-Poissonian. This becomes
apparent from the expressions for the photon-number average and variance of
general squeezed states described by the Wigner function of equation (5) [26]:

k nl =
a2 + b2 - 2

4
+

e2
0

2 , (7)

Var (n) =
a4 + b4 - 2

8
+

e2
0

2
(a2 cos2 u + b2 sin2 u ) . (8)

These expressions were con® rmed for the states of ® gure 5, by reconstruction of
the corresponding photon-number distribution [9].

To obtain sub-Poissonian amplitude-squeezed light, we reduced the anti-
squeezing (with a corresponding reduction in squeezing) by reducing the pump
power of the OPA. Figure 8 shows the reconstructed density matrices of a sub-
Poissonian amplitude-squeezed state and a super-Poissonian phase-squeezed state
of approximately the same amplitude. The good agreement with the theoretical
expectation is demonstrated in ® gure 9, which depicts the elements q nn of these two
matrices together with their theoretical counterparts, in comparison with those of a
coherent state. The Mandel Q parameter for the sub-Poissonian photon statistics
is to our knowledge the lowest value achieved so far for non-classical light
generated by nonlinear frequency conversion [27].

This data analysis may be extended with the goal of improvement by taking
into account the detection e� ciency in our algorithms, thus trying to reconstruct
the photon statistics of the signal before detection. This is done by applying the
inverse Bernoulli transform to the reconstructed photon statistics using as para-
meter the detection e� ciency [28]. We found that for our data the errors increase
very rapidly even for small photon numbers n. The analysis of a squeezed vacuum
state of our experiment by more powerful reconstruction methods employing
Bayesian analysis has been described in [14].

To relate the values found for the average occupation number k nl to the
actually measured powers, we note that k nl is the average photon ¯ ux per unit
bandwidth. Given our detection bandwidth of 100 kHz set by the low-pass ® lter, a
state with k nl photons implies a total photon ¯ ux of k nl 105 photons
s- 1 < 0.02k nl pW power distributed over the side bands 100kHz wide at 6 X .
For a coherent state this light power is concentrated in the coherent excitation e0.
For a bright squeezed state the ¯ ux in the side bands arises partly from the
monochromatic coherent excitation, and partly from the wide-band (and, on the
scale of 100 kHz, white) noise power of the quantum ¯ uctuations.
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The total output power of the OPA consists of the transmitted seed wave
power, Ps < 100pW, plus the wide-band contribution of the quantum ¯ uctua-
tions. Integration over the squeezing spectrum of equation 2 results in a contribu-
tion 2h es C p Pp /(Pth - Pp) = 6.5 ´ 108 photonss- 1 < 100 pW if Pp = 0.9Pth. Thus
the total output power is about 200 pW.

Another important feature of a quantum state that can be read o� its density
matrix is the purity. The trace of the square of the density matrix is a measure of
the deviation of the state from a pure one. For the states in ® gure 8 this value
amounted to Tr q 2 = 0.82± 0.85 in agreement with the theoretical value given by 1/
ab. For the stronger squeezed states in ® gure 6 the agreement of Tr q 2 < 0.39 with
1 /ab < 0.45 is reduced, since Fock states with high n contribute signi® cantly to q

but could not be accurately reconstructed from the data. That in general for the
generated squeezed states the value Tr q 2 = 1 /ab is smaller than the values
expected for the given high overall detection e� ciency is because the states’
mixed character is also caused by additional noise of the pump beam.

4.4. Phase distributions
The de® nition of a quantum-mechanical phase operator has been a subject of

intense interest in the quantum optics community [29]. Several possible de® nitions
exist, which are equally well usable from the point of view of QSR, as has been
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Figure 8. Reconstructed density matrices (absolute values) of (a) an amplitude-
squeezed state and (b) a phase-squeezed state with approximately equal amplitude
e0 = 4.12, squeezed variance a2 = 0.44 and antisqueezed variance b2 = 3.4. The
deviation of the matrix elements from the theoretical values is of the order of 0.01.



shown by a comparison of di� erent phase operators by Beck et al. [30]. The Pegg±
Barnett phase distribution, de® ned by

Ppb(µ) =
1
2p å

s

n,m=0
exp [i(m - n)µ]q nm (9)

on the (s + 1)-dimensional subspace spanned by {|nl }n=0,...,s is a convenient choice
for analysing the measured states’ phase distributions, since by QSR it is only
possible to determine a ® nite number of density matrix elements q nm. In the same
way as the photon number distribution is the appropriate representation to verify
intensity squeezing for amplitude-squeezed light, the phase distribution is in-
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Figure 9. Photon number distribution of the states in ® gure 8 in comparison with a
coherent state of the same amplitude: ( · ), experimental data; histograms show the
theory. The amplitude-squeezed state shows a strong sub-Poissonian statistics. The
deviation of photon number average and variance from their theoretical expectations
is less than 2%.



tended to accomplish the same for the phase-squeezed states. Figure 10 shows the
phase distributions for the states in ® gure 8, demonstrating the phase squeezing
and antisqueezing of these states in comparison with a coherent state of the same
amplitude [31] (new numerical concepts for direct reconstruction of the Susskind±
Glogower phase distribution have been presented in [32]).

As the coherent excitation e0 of the amplitude-squeezed state is reduced, a
bifurcation of the phase distribution occurs ( ® gures 11 (a) and (b)). Finally the
squeezed vacuum with e0 = 0 displays a striking double-peaked phase distribution
( ® gure 11 (c)) due to the large ratio of the antisqueezed to the squeezed variance.
This behaviour was ® rst pointed out by Schleich et al. [33].

4.5. Quantum state reconstruction of incoherent superpositions of coherent states
As a demonstration of the applicability of QSR to more general states of the

light ® eld and to investigate the in¯ uence of noise on the measurement system, we
studied coherent states with controlled addition of classical noise.

In contrast with noise suppression below the vacuum level, the addition of
noise to an experimental system is one of the easiest tasks to be accomplished in the
laboratory. With the set-up used to study coherent states (pump o� ), phase noise
was added to the signal wave by applying a random modulation (Gaussian noise of
1 MHz bandwidth) and, to achieve stronger modulation amplitudes, an additional
2 kHz sine wave to a piezo-mounted mirror in the signal wave’s path before the
OPA cavity. Changing the amplitude of the modulation from zero up to one optical
wavelength controls the degree of phase di� usion of the state. Amplitude noise was
added to the signal wave by modulating with Gaussian noise the amplitude of the
rf source driving the phase modulator that generated the side bands at the
measurement frequency X . `Thermal’ noise was implemented by combining
these two noise sources or by passing the seed wave through a rapidly rotating
transparent wheel having a rough surface so that random scattering occurs. The
latter method had been used as early as 1965 by Arecchi [34] in one of the ® rst
experiments on optical quantum state characterization.
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Figure 10. Pegg± Barnett phase distribution for the states in ® gure 8 in comparison with
a coherent state of the same amplitude: ( · ), experimental data; ( Ð Ð ), theoretical
expectations.



The noise traces of the states and the Wigner functions of the phase-di� used
states are shown in ® gures 12 and 13 (similar states have been reported in [35]).
Since the amplitude-di� used state’s distribution is very similar to that of a phase-
squeezed state, it is not presented here. The completely phase-di� used coherent
state has been described in [36]. Its ring-shaped, clearly non-Gaussian Wigner
function is given by [37]

W (x,y) =
1
2p

exp (- x2 - y2 - e2
0)I0[2e0(x2 + y2)1/2], (10)

where I0 is the modi® ed Bessel function of order zero.
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Figure 11. Pegg± Barnett phase distribution for two amplitude-squeezed states with
amplitudes e0 (a) before and (b) after the bifurcation point,where the two maxima of
the phase distribution split; (c) the squeezed vacuum state in ® gure 5: ( · ),
experimental data; (Ð Ð ), to theory. The slight asymmetries are due to a variation
of the squeezing angle u , since it was not actively stabilized.



The coherence properties of the generated states are best visualized by the
density matrix in the Fock representation. Figure 14 shows how the addition of
phase noise to the coherent state leads to an increasing extinction of its o� -diagonal
elements, while the diagonal elements, that is the Poissonian statistics, remain
unchanged. The thermal state, on the other hand, exhibits an exponential decay of
the diagonal elements and o� -diagonal elements that are zero within the experi-
mental error of 0.01.

5. Conc lusion
Quantum state analysis of light by homodyne tomography has been developed

into a reliable and easily applicable tool for the investigation of single-mode light
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Figure 12. Noise traces i X of incoherent superpositions of coherent states as a function
of time (a.u., arbitrary units). From the top, partially phase-di� used state,
completely phase-di� used state, amplitude-di� used state (a2 = 1.0; b2 = 5.4) and
thermal state (a2 = b2 = 14.8) .



sources. Owing to the high detection e� ciency achievable and the wide range of
possibilities for theoretical analysis, QSR methods can play an important role in
the characterization of new quantum optical states. It is hoped that the availability
of these powerful methods will stimulate experimental e� orts to generate new
quantum states with non-Gaussian statistics using higher-order nonlinear pro-
cesses.
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Figure 13. From the top, reconstructed Wigner function of a coherent state, a partially
phase-di� used state, and a completely phase-di� used state.
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Figure 14. Reconstructed density matrices: (a) coherent state with purity Tr q 2 = 1; (b)
partially phase-di� used state with Tr q 2 = 0.26; (c) completely phase-di� used state
with Tr q 2 = 0.09; (d) thermal sate with Tr q 2 = 0.079. Owing to drifts of the
signals’ laser power, the average photon number of the state (b) is slightly smaller
than those of the states (a) and (c).
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