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Overview

Central topic of this thesis is the investigation of the quantum nature of light. This
investigation is carried out in two separate experiments which are described in part I and
part II respectively.

In part I, classical and non-classical laser radiation is characterized at the quantum
mechanical level with respect to its amplitude and phase 
uctuations, its photon number
distribution and other observable quantities. This is done by employing recently deve-
loped methods of quantum state reconstruction. Such a complete characterization is of
fundamental interest, since it can provide a much more detailed experimental description
of light than previously known. Furthermore, since many experimental systems are ana-
lyzed by optical means, these methods may in future �nd important applications in the
characterization of such systems in full quantum mechanical detail, by determining the
state of the light �eld used as a probe before and after the interaction with the system.

In part II, high precision position measurements via laser interferometry are investi-
gated. Such measurements play an important role in the microscopic domain (optome-
chanical sensors, modern microscopy techniques) as well as in the macroscopic domain
(development of large scale interferometers for the detection of gravitational waves). The
goal of the second experiment is to explore the quantummechanical limits in the precision
with which the position of a macroscopic body can be determined.

One common conceptual aspect of both experiments, besides the similar optical tech-
niques employed, is that both attempt a high precision characterization of a harmonic
oscillator system disturbed by stochastic noise. In part I, this oscillator is the light �eld,
subject to quantum noise, in part II, it is a mechanical harmonic oscillator excited by
thermal noise. Further considerations about the connection and possible uni�cation of
the two experiments can be found in the outlook to part II.

The main results of the �rst part of the thesis are
(i) the complete mapping of the whole family of squeezed states of the light �eld, that is
light with reduced quantum noise. The values for noise suppression are among the highest
achieved so far,
(ii) the �rst direct evidence of photon number oscillations in parametrically downconverted
light, and
(iii) the measurement of the �rst-order time correlation function of the light �eld of
squeezed vacuum.

The main result of the second part is the detection of the Brownian motion of a
cryogenically cooled high-Q mechanical oscillator, using a high-�nesse Fabry-Perot inter-
ferometer. Displacements in the order of 10�14m of a macroscopic object were detected.

i



Kurzfassung

Das zentrale Thema der vorliegenden Arbeit ist die Untersuchung der Quantennatur
des Lichtes. Diese Untersuchung wurde in zwei separaten Experimenten durchgef�uhrt,
welche in Teil I und Teil II beschrieben werden.

In Teil I wird klassische und nichtklassische Laserstrahlung auf quantenmechani-
scher Ebene charakterisiert, im Hinblick auf seine Amplituden- und Phasen
uktuatio-
nen, seine Photonenzahlverteilung und andere observable Gr�o�en. Dies geschieht mit
Hilfe von j�ungst entwickelten Methoden der Quantenzustandsrekonstruktion. Solch eine
vollst�andige Charakterisierung ist zum einen von fundamentalem Interesse, da sie eine bei
weitem detailliertere experimentelle Beschreibung von Licht erm�oglicht, als bisher bekannt
war. Zum anderen werden viele experimentelle Systeme mit Hilfe optischer Verfahren
analysiert, wodurch diese Methoden der Quantenzustandsrekonstruktion zuk�unftig eine
wichtige Anwendung im Rahmen der Charakterisierung solcher Systeme �nden k�onnen,
indem der Zustand des sondierenden Lichtfeldes vor und nach der Wechselwirkung mit
dem System bestimmt wird.

In Teil II werden laserinterferometrische Pr�azisionsmessungen des Ortes untersucht.
Solche Messungen spielen sowohl im mikroskopischen (optomechanische Sensoren, mo-
derne Techniken der Mikroskopie), als auch im makrosopischen Bereich (Entwicklung von
Gravitationswellendetektoren) eine wichtige Rolle. Das Ziel dieses zweiten Experimentes
ist es, die quantenmechanische Grenze der Pr�azision zu erforschen, mit welcher der Ort
eines makroskopischen Gegenstandes bestimmbar ist.

Ein gemeinsamerAspekt beider Experimente, neben den jeweils verwendeten �ahnlichen
optischen Techniken, ist der, da� beide hochpr�azise Charakterisierungen eines von sto-
chastischem Rauschen gest�orten harmonischen Oszillatorsystems vornehmen. In Teil I
is dieser Oszillator das Lichtfeld selbst, welches dem Quantenrauschen ausgesetzt ist, in
Teil II ist es ein mechanischer Oszillator, angeregt durch thermisches Rauschen.

Die Hauptresultate des ersten Teils der Dissertation sind
(i) die vollst�andige experimentelle Aufzeichnung der gesamten Familie der gequetschten
Zust�ande des Lichtfeldes, d.h. Zust�ande mit verringertem Quantenrauschen. Der Betrag
der Rauschunterdr�uckung liegt gleichauf mit den weltweit erzielten Bestwerten,
(ii) der erste direkte Nachweis von Photonenzahloszillationen bei parametrisch konver-
tiertem Licht und
(iii) die Messung der Zeitkorrelationsfunktion erster Ordnung des Lichtfeldes von ge-
quetschtem Vakuum.

Das Hauptergebnis des zweiten Teils ist der Nachweis der Brownschen Bewegung eines
kryogen gek�uhlten mechanischen Oszillators hoher mechanischer G�ute mit Hilfe eines
Hoch�nesse-Fabry-Perot-Interferometers. Ortsverschiebungen in der Gr�o�enordnung von
10�14m wurden detektiert.

ii



Contents

1 Introduction to part I 1

2 Theory I: Reconstruction of quantum states of the light �eld 3
2.1 The state of a quantum system : : : : : : : : : : : : : : : : : : : : : : : : 3
2.2 The light �eld : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2.2.1 States of the light �eld : : : : : : : : : : : : : : : : : : : : : : : : : 5
2.3 The measurement method : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.3.1 Quantum tomography : : : : : : : : : : : : : : : : : : : : : : : : : 11
2.3.2 Alternative measurement methods : : : : : : : : : : : : : : : : : : : 12

2.4 Cavity equations for the parametric ampli�er : : : : : : : : : : : : : : : : : 13

3 Experiment I: States of the light �eld 16
3.1 The setup : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3.1.1 The mode cleaner : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
3.1.2 The frequency doubler : : : : : : : : : : : : : : : : : : : : : : : : : 18
3.1.3 The OPA : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
3.1.4 Parametric ampli�cation and deampli�cation : : : : : : : : : : : : : 20
3.1.5 The homodyne system : : : : : : : : : : : : : : : : : : : : : : : : : 20
3.1.6 Scheme for the generation of bright squeezed states : : : : : : : : : 23
3.1.7 Relation of the measured photo current to the quantum noise : : : 24

3.2 Quantum state measurements : : : : : : : : : : : : : : : : : : : : : : : : : 25
3.2.1 Squeezing measurements : : : : : : : : : : : : : : : : : : : : : : : : 29
3.2.2 Higher order squeezing : : : : : : : : : : : : : : : : : : : : : : : : : 31

3.3 Reconstruction of the Wigner function : : : : : : : : : : : : : : : : : : : : 32
3.4 Reconstruction of the density matrix : : : : : : : : : : : : : : : : : : : : : 35

3.4.1 Photon number distributions : : : : : : : : : : : : : : : : : : : : : : 36
3.4.2 Density matrices : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39
3.4.3 Comparison to theory : : : : : : : : : : : : : : : : : : : : : : : : : 41
3.4.4 Purity of the measured quantum states : : : : : : : : : : : : : : : : 42
3.4.5 Photon number oscillations and phase space interference : : : : : : 43
3.4.6 Phase distributions of squeezed light : : : : : : : : : : : : : : : : : 45
3.4.7 The Special Number-Phase Wigner function : : : : : : : : : : : : : 48

3.5 Other reconstruction methods : : : : : : : : : : : : : : : : : : : : : : : : : 49
3.5.1 The inverse problem approach by Sze Tan : : : : : : : : : : : : : : 49
3.5.2 The number-phase uncertainty : : : : : : : : : : : : : : : : : : : : : 52
3.5.3 Probing of quantum phase space by photon counting : : : : : : : : 53

3.6 The OPO at and above threshold : : : : : : : : : : : : : : : : : : : : : : : 54

iii



3.7 Classical superpositions of coherent states : : : : : : : : : : : : : : : : : : 58
3.7.1 Phase di�used states : : : : : : : : : : : : : : : : : : : : : : : : : : 59
3.7.2 Thermal states : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

3.8 Some remarks about two-mode detection : : : : : : : : : : : : : : : : : : : 63
3.9 Broadband reconstruction : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

3.9.1 Analysis in the frequency domain : : : : : : : : : : : : : : : : : : : 67
3.9.2 Analysis in the time domain : : : : : : : : : : : : : : : : : : : : : : 69

3.10 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72
3.11 Outlook part I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

4 Introduction to part II 77

5 Theory II: A cavity with a movable mirror 78
5.1 Mechanical harmonic oscillation : : : : : : : : : : : : : : : : : : : : : : : : 78
5.2 The Fabry-Perot interferometer, FM detection : : : : : : : : : : : : : : : : 79
5.3 Position measurements with a Fabry-Perot interferometer : : : : : : : : : : 80
5.4 Radiation pressure e�ects : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

5.4.1 List of possibly occurring e�ects : : : : : : : : : : : : : : : : : : : : 84
5.4.2 Estimation of in
uence of the e�ects : : : : : : : : : : : : : : : : : 86

6 Experiment II: Interferometric position measurements 89
6.1 The mechanical oscillator : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

6.1.1 Basic description : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89
6.1.2 Fastening of the oscillator : : : : : : : : : : : : : : : : : : : : : : : 91
6.1.3 Measurement of the quality factor : : : : : : : : : : : : : : : : : : : 92
6.1.4 Possible changes in the oscillator design : : : : : : : : : : : : : : : : 94
6.1.5 Nonlinear mechanical e�ects : : : : : : : : : : : : : : : : : : : : : : 95
6.1.6 Investigation of microoscillators : : : : : : : : : : : : : : : : : : : : 97

6.2 Optical coating and cleaning : : : : : : : : : : : : : : : : : : : : : : : : : : 99
6.2.1 Surface quality measurements : : : : : : : : : : : : : : : : : : : : : 100

6.3 The cryostat : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101
6.4 The setup : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102
6.5 Interferometric measurements of the oscillator's motion : : : : : : : : : : : 104

6.5.1 Quantitative evaluation, comparison with theory : : : : : : : : : : : 105
6.5.2 Remarks about the in
uence of thermal e�ects : : : : : : : : : : : : 109

6.6 Related experiments of other groups : : : : : : : : : : : : : : : : : : : : : 110
6.6.1 Directly comparable experiments : : : : : : : : : : : : : : : : : : : 110
6.6.2 Experiments employing similar techniques : : : : : : : : : : : : : : 111

6.7 Outlook part II : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112

7 Conclusion 115

iv



1 Introduction to part I

A central issue in many �elds of quantum physics is the development and application of
theoretical and experimental tools for obtaining information about the states of quantum
�elds of matter and radiation. Although the state of an individual particle or system is
unobservable, it is possible to determine the state of an ensemble of identically prepared
systems by performing a large number of measurements [204]. This procedure of state
determination is called quantum state reconstruction. Experimentally the �rst quantum
state reconstruction was performed by Havener et al. [85], who determined the density
matrix of a H(n=3) atom. But it was not until a more general theoretical background
was laid out [13, 259]1 and the �rst measurement of the Wigner function, a quantum
mechanical analogue of the classical phase space distribution, was implemented [229, 230]
that the �eld started 
ourishing.

Notable experimental success has since then been achieved in generating and de-
termining states of various quantum mechanical systems such as a single mode of light
[229, 230, 163, 28, 30, 31], vibrational modes of a diatomic molecule [60, 5] and of an ion
in a Paul trap [132], and the motional state of freely propagating atoms [126] (for reviews
see [70, 110]).

The �rst part of this thesis presents the investigation of the light �eld by methods of
quantum state reconstruction. Special emphasis is placed on the characterization of so-
called squeezed states of light: The electric �eld of a freely evolving monochromatic laser
wave propagating sinusoidally in space is best described in quantum optics by a coherent
state [74]. Due to the fact that the operators for phase and amplitude quadrature of the
light �eld do not commute, any light wave carries intrinsic quantum noise, having its origin
in Heisenberg's uncertainty relation. For coherent states this quantum noise is evenly
distributed between both quadratures. For squeezed states the quantum noise is less in
one quadrature than in its conjugate, thus the noise variance is changing periodically
during the wave's propagation.

Squeezed states were �rst de�ned and theoretically analyzed in [109, 240, 161, 235,
280, 94] (see also the overviews in [196, 232, 266]). Squeezing is a general phenomenon of
harmonic oscillations accompanied by noise. Not only the light �eld, but also the motional
state of a trapped atom (few phonons) [156], ensembles of phonons in crystals [72] and
thermomechanical noise [206] have been squeezed in the past. For the light �eld the �rst
observations of squeezed states are by now more than 10 years old [227, 224, 276, 146].
Still, as the most easily accessible class of non-classical states and as a potential means of
noise reduction in precision measurements, for example resolution enhancement of interfe-
rometers [40, 278, 76], high resolution spectroscopy [184], weak absorption measurements
[79], and quantum nondemolition measurements [34], they remain an important subject

1citations are given in chronological rather than alphabetical (numerical) order
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2 Chapter 1. Introduction to part I

of present-day research e�orts.
Part I of this thesis is structured as follows: First a brief theoretical outline of quan-

tum state reconstruction and the generation of squeezed states is given. In the following
experimental chapter the setup (Sec. 3.1) and the measurements of squeezed and cohe-
rent states (Sec. 3.2) are presented. Various reconstruction methods are applied (3.3{3.5).
The investigation of the quantum states emitted by the OPO directly at threshold and
of classical superpositions of coherent states is described in sections 3.6 and 3.7. The last
experiment presented in this �rst part is the simultaneous detection of a whole spectrum
of quantum states and the measurement of the �rst order time correlation function. Sec-
tion 3.10 gives an overview over all experimentally investigated states of the light �eld,
concluded by a short outlook.



2 Theory I: Reconstruction of quantum

states of the light �eld

2.1 The state of a quantum system

The state of a one-dimensional quantum system with Hamiltonian H is described by its
state vector j i which obeys the evolution equation

i�h
@

@t
j ; t i = H j i : (2.1)

In the coordinate representation of the Schr�odinger picture, the state vector is given by a
complex wave function

 (x; t) = hx j ; t i : (2.2)

In the case of an ensemble of identically prepared systems each with probability pi in a par-
ticular state j i i, the whole system is described by its density operator �̂ =

P
i
pij i ih i j

[64, 16] obeying the evolution equation

i�h
@�̂(t)

@t
= � [H; �̂(t) ] (2.3)

(neglecting the coupling to an outer environment). If the density operator is known, the
expectation value for any arbitrary physical variable represented by an operator A can be
calculated via 1

hA i = Tr(�̂A) ; (2.4)

this is the reason for saying, the state of the system is completely determined by its
density matrix.

An important representation of the density matrix is given by its expansion in the
Fock state basis

�̂ =
X
m;n

�mn jm ihn j (2.5)

with �mn = hm j �̂ jn i. The diagonal elements of �̂ determine the state's distribution of
energy quanta, i.e. for the light �eld the photon statistics pn = �nn. (For a discussion of
the usefulness of the notion of a photon see [127]).

An equivalent description of the state of a system o�ers the Wigner function, a quan-
tum mechanical analogue of the classical phase space distribution [272, 89]. It is de�ned
by

W (x; p) =
1

2�

1Z
�1

eipx
0hx� x0

2
j �̂ jx+ x0

2
idx0 : (2.6)

1Throughout this thesis operators are denoted by capital letters or by small letters with a hat.
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4 Chapter 2. Theory I: Reconstruction of quantum states of the light �eld

As a joint distribution function of position x and momentum p it cannot be a probability
distribution, since it may take on negative values. Nevertheless it retains many properties
of a classical two-dimensional probability distribution: It is real, its marginal distributions
are the position and momentum distributions

1Z
�1

W (x; p)dp = hx j �̂ jx i = P (x) ;

1Z
�1

W (x; p)dx = h p j �̂ j p i = P (p) ; (2.7)

(2.8)

and similar to the density operator it can be used to calculate expectation values of any
arbitrary physical variable represented by an operator A:

Tr(�̂A) = 2�

1Z
�1

1Z
�1

W (x; p)WA(x; p) dxdp ; (2.9)

where theW (x; p) is the Wigner function of the state and WA(x; p) is the Wigner function
of the operator A de�ned by

WA(x; p) =
1

2�

1Z
�1

eipx
0hx� x0

2
jA jx+ x0

2
idx0 : (2.10)

Due to these properties W (x; p) is called a quasiprobability distribution.2

2.2 The light �eld

In quantum optics the single mode light �eld of frequency ! is described by a quantum
harmonic oscillator. Its Hamiltonian is given by

H = �h!(n̂ +
1

2
) ; (2.11)

where n̂ = âyâ is the photon number operator, â and ây being the annihilation and creation
operators.

In comparison with the description of a single particle in a harmonic potential, po-
sition x and momentum p are replaced by the operators of the amplitude and phase
quadrature X = (â+ ây)=

p
2 and Y = (â� ây)=

p
2i , of the electric �eld.3 Since the two

2Hillery et al. [89] list altogether seven properties which de�ne the function uniquely. This makes
it possible to extend the concept of the Wigner function to other spaces [256]. For applications of the
Wigner function to classical optics see [10].

3Note that the scaling factor
p
2 in the transformation X;Y ! a; ay becomes noticeable, when phase

space amplitudes are put in relation to photon numbers n = aay. The factor 1/2 for e0 in Eq. 3.17 and
Eq. 2.20 vanishes when using the asymmetric transformation X = (â+ ây) and Y = (â� ây)=i.



2.2. The light �eld 5

quadrature operators do not commute, [X;Y ] = i ; their standard deviations must obey
the Heisenberg uncertainty relation

�X�Y � 1 : (2.12)

(Note that a strict derivation of this inequation from the uncertainty relation would lead
to a factor 1/2 on the right side. Since the scaling of the uncertainties is to some extent
arbitrary when comparing experimental values with theory, I use a normalization in which
the vacuum �eld's variance is most simple, �X = �Y = 1.)

2.2.1 States of the light �eld

Fock states jn i, coherent states j� i and squeezed states j�; � i are the three basic types
of states that we are interested in, since they will appear later on in calculations or the
description of the measurements. Another class of states, incoherent superpositions of
coherent states, will be presented in the experimental section.

Fock states

The energy eigenfunctions or Fock states jn i are given in the Schr�odinger representation
by

 n(x) = hxjn i = 1

�1=4
p
2nn!

Hn(x) exp(�x2=2) ; (2.13)

where Hn denotes the nth Hermite polynomial. Especially the wave function of the
vacuum state j 0 i is given by the Gaussian distribution

 0(x) =
1

�1=4
exp(�x2=2) : (2.14)

Since the energy eigenfunctions are stationary states, their time evolution consists simply
of a phase shift: jn; t i = U(t) jn i = ein!t jn i, where U(t) = exp(�i!t âyâ) is the time
evolution operator.

Coherent states

Coherent states are de�ned by

j� i = exp
�
�1

2
j� j2

� 1X
n=0

�np
n!
jn i : (2.15)

They can be considered as being generated by letting the displacement operator D(�) �
exp(� ây���â) act on the vacuum state j� i = D(�) j 0 i : The wave function of a coherent
state with amplitude � = 2�1=2 (e0 cos�+ i e0 sin�) follows from Eq. 2.15 [222]

 �(x) =
1

�1=4
exp

"
�(x� e0 cos �)2

2
+ ix e0 sin� � i e20 sin 2�

4

#
: (2.16)



6 Chapter 2. Theory I: Reconstruction of quantum states of the light �eld

Replacing jn i by jn i ein!t in Eq. 2.15 results in a time evolution of the wave packet of

j �(x; t)j2 = 1p
�
exp

h
�(x � (e0 cos(!t � �))2

i
: (2.17)

Thus the wave packet oscillates back and forth. This behavior, similar to the one of
a classical point mass, was the original motivation for Schr�odinger to study coherent
states as a �rst example of quantum dynamics in 1926 [222] (see also [26]). In quantum
optics they were introduced 1963 by Glauber [74], as being the most adequate quantum
mechanical description of an ideal laser beam.

The Wigner function for a coherent state is a displaced rotationally symmetric two-
dimensional Gaussian:

W (x; y) = exp
�
�(x� e0 cos �)

2 � (y � e0 sin�)
2
�
: (2.18)

For the density matrix in the Fock representation we �nd using Eq. 2.15

�nm =
1p

2n2mn!m!
en0 e

m
0 e�

e
2

0

2 : (2.19)

The diagonal elements show the well known Poissonian statistics, with the characteristic
property that its variance is equal to its mean value

�2n = hn2 i � hn i2 = hn i = j�j2 = e20
2
: (2.20)

Squeezed states

The class of all minimum-uncertainty squeezed states arises from letting the squeezing
operator

S(r) � exp
�
r

2
â2 � r

2
ây2
�
; (2.21)

with r � 0 act on a coherent state j� i: 4

j�; r i = S(r)D(�) j 0 i ; (2.22)

The amplitude after the interaction is given by � = cosh r �� sinh r ��. Thus its absolute
value changes in dependence on the phase � of the input state � = 2�1=2 (e0 cos �+ i e0 sin�)

from e0 to e0
q
e�2r cos2 � + e2r sin2 �.

Since the squeezing operator transforms the quadratures according to

Sy(r)X S(r) = Xe�r and Sy(r)Y S(r) = Y er ; (2.23)

the state's uncertainties become squeezed in the X quadrature and anti-squeezed in the
Y -quadrature. Fig. 2.1 illustrates this hyperbolic action of the squeezing operator in phase
space.

4This state was originally called two-photon coherent state [280]. It is equivalent to a squeezed state,
where the latter is usually de�ned by �rst letting the squeezing operator act on a vacuum state with a
subsequent displacement [266].



2.2. The light �eld 7

Y

X

Figure 2.1: Action of the squeezing operator in phase space. Shown are the uncer-
tainty areas (contours of the Wigner functions) of the states before (coherent) and after
(squeezed) the operator's action.

The time evolution of the wave packet of a squeezed state is given by

j (x; t)j2 = 1p
�w(t)

exp

"
�(x � (e0 cos(!t � �))2

w(t)

#
; (2.24)

with w(t) =
q
e�2r cos2(!t) + e2r sin2(!t). The wave packet oscillates back and forth and

in addition changes its width (\breathes") periodically.

The photon statistics of pure squeezed states has been analyzed in [235, 280, 214].
For the squeezed vacuum state the odd photon number probabilities vanish resulting
in odd/even oscillations. For bright squeezed states, the photon statistics shows large
scale oscillations, termed Schleich-Wheeler oscillations. Both features can be explained
as arising from interference in phase space (see Sec. 3.4.5).

One complication for exact theoretical calculations is due to the fact that the squeezed
states generated in the experiment are not pure states, as de�ned above, but mixed states
due to the interaction of the light �eld with the environment (losses). This is equivalent to
the fact that they are not minimum uncertainty states, i.e. �X 6= 1=�Y (see Sec. 3.4.3).
To abbreviate the notation in all following sections a2 denotes the minimum and b2 the
maximum variance of the squeezed state (replacing e�2r and e2r resp.). The Wigner
function for bright, non-minimum-uncertainty squeezed states is then given by

W (x; y) =
1

�ab
exp

 
�(x� e0 cos �)2

a2
� (y � e0 sin�)2

b2

!
: (2.25)

A characteristic feature is the elliptical shape of its contours. With this expression the
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density operator in the position basis is found to be

�(x+ x0; x� x0) =

1Z
�1

ei2x
0yW (x; y) dy (2.26)

=
1p
�a

exp

2
4�

 
x� e0 cos �

a

!2
� (bx0)2 + i2x0e0 sin�

3
5 : (2.27)

To calculate the matrix elements in the number state representation we use

�n;n+j =
Z Z

�(x; y) n(x) n+j(y) dxdy ; (2.28)

with  n(x) de�ned by Eq. 2.13. In the general case of bright squeezed light �nm is fairly
complicated to calculate ([151]). In the following I will restrict myself to the squeezed
vacuum state. In the case of a non-minimum-uncertainty state with 1=ab 6= 1, this state
is also called squeezed thermal state, since it can be thought of as being generated by
squeezing a thermal state (see Ref. [151, 133]). This can be seen as follows: A thermal state
of a harmonic oscillator of frequency ! with the temperature T and the mean occupancy
n
T
� [exp(�h!=k

B
T ) � 1]�1 is described by the density operator (see section 3.7.2)

�̂
T
� 1

1 + n
T

1X
m=0

 
n
T

1 + n
T

!m
jm ihm j: (2.29)

By applying the squeezing operator S(r) we obtain in the position representation

�(x1; x2) = hx1 jS(r) �̂T Sy(r) jx2 i (2.30)

which yields exactly equation 2.27 with

a = e�r
p
1 + 2nT ; b = er

p
1 + 2nT and e0 = 0 : (2.31)

Using Eq. 2.28, the matrix elements of the squeezed thermal state are given by

�n;n+j =
1

�a
q
22n+jn!(n+ j)!

1Z
�1

dx

1Z
�1

dy Hn(x)Hn+j(y) exp
�
�Ax2 �Ay2 + 2C xy

�
;

(2.32)

with A � 1

2
+

1

4a2
+
b2

4
and C � b2

4
� 1

4a2
: (2.33)

An alternative ansatz is the calculation of � via the Wigner function

�nm = 2�

1Z
�1

dx

1Z
�1

dy W (x; y)Wnm(x; y) ; (2.34)

where

Wnm(x; y) =
1

2�

1Z
�1

dx0  m(x� x0

2
) n(x+

x0

2
) exp (ix0y)

(2.35)

=
(�1)m
�

s
2nm!

2mn!
(x� iy)n�m exp[�(x2 + y2)]Ln�m

m (2x2 + 2y2)



2.3. The measurement method 9

is the Wigner function of the projection operator jn + jihnj, Ln�m
m are the generalized

Laguerre polynomials, and  n(x) are the energy eigenfunctions de�ned in Eq. 2.13.
Both integrals are solved by the associate Legendre function Pm

n of degree n and order
m. Hence the Fock representation of the density operator of the squeezed thermal state
reads

�n;n+2k+1 = 0 and

(2.36)

�n;n+2k =
(�1)�k=22q

(a2 + 1)(b2 + 1)

s
n!

(n + 2k)!
�n+kP k

n+k(�) (2.37)

with

� �
"
(a2 � 1)(b2 � 1)

(a2 + 1)(b2 + 1)

#1=2
and � � a2b2 � 1q

(a4 � 1)(b4 � 1)
: (2.38)

For the photon number distribution we get

pn = �nn =
2q

(a2 + 1)(b2 + 1)
�nPn(�); (2.39)

where Pn � P 0
n is the Legendre polynomial of degree n. Note that both � and � are

purely imaginary, since a2 < 1. Altogether the i's cancel out, due to the structure of the
Legendre polynomials, so that �nm is a real number. As a result of this cancellation the
signs of the coe�cients of the Legendre polynomials, which are usually strictly positive,
are alternating in Eq. 2.37.

The non-classicality of the squeezed thermal state has its manifestation in the odd-
even oscillation of the diagonal and even o�-diagonal elements �n;n+2k (see Fig. 3.19).
This oscillation has its origin in the two-photon generation process since the Hamiltoni-
an is quadratic in the creation and annihilation operators. Note that for mixed states
with 1=a 6= b the odd diagonal elements do not vanish completely (see Fig. 3.16 in the
experimental part). Thus the two-photon correlation is reduced by the coupling to the
outer environment. That the odd o�-diagonal elements �n;n+2k+1 are equal to zero is not
a sign of non-classicality, but simply re
ects the symmetry of the state in phase space
W (x; y) = W (�x;�y) (see Fig. 3.19). A further discussion of this matrix is given in
Sec. 3.4.

2.3 The measurement method

How is the quantum state of an optical wave determined? The measurements to be
performed on the state are measurements of the electric �eld operator

E(�) / X� = X cos � + Y sin � (2.40)

at all phase angles �.
To experimentally access the electric �eld, which oscillates with a frequency !=2�

of hundreds of THz, a balanced homodyne detector [281, 1, 223, 283, 191] is employed.
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Piezo

Y

X

i_(t,θ)
xθ

θ xθ

ELO

ES

−

Figure 2.2: Scheme of balanced homodyne detection. To the left, the phase space repre-
sentations of the unknown signal state and the strong coherent local oscillator are shown.
The phase angle � between the two is the angle of measurement. The two corresponding
waves ES and ELO are overlapped at a beam splitter. The subtracted photocurrents of
two detectors at the two beam splitter output ports yield a current proportional to the
signal's electric �eld quadrature X�. By varying the angle � via a piezoelectric shift of a
mirror in the beampath of either one of the two waves, the signal state can be observed
from all possible directions in phase space.

Herein the signal wave is spatially overlapped at a 50/50 beam splitter with a strong
coherent local oscillator wave of nearly the same frequency. The two �elds emerging from
the beam splitter are the sum and the di�erence of the signal and local oscillator �elds. By
subtracting the photocurrents of two detectors at the two beam splitter output ports, the
natural oscillation of the signal state under investigation is converted to a low frequency
electrical signal i�, directly proportional to X� (calculations see Sec. 3.1.7). The angle �
is the relative phase between signal and local oscillator. It is varied linearly in time by a
movable mirror in the beampath of one of the two waves.

A large number of measurements of the observable X� yields the probability distri-
bution P�(x�) of its eigenvalues x�. The relation between the measured distributions and
the density operator � is

P�(x�) = hx jUy(�) �̂ U(�) jx i; (2.41)

where U(�) = exp(�i�âyâ) performs a rotation in phase space. Since the optical state
evolves freely with frequency !, U is equivalent to the time evolution operator with
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Figure 2.3: Measurement of the vacuum noise by balanced homodyne detection. The
�gure right shows the wave packet sampled from the noise measurement left. A Gaussian
�t (solid line) is shown for comparison. The variance of the Gaussian determines the noise
level of the vacuum.

� = !t+ const:, and the �-dependence of P� is equivalent to the time dependence of the
position probability density of the state (i.e. of j (x; t) j2, if �̂ = j ih j is a pure state).
In this way the rapid oscillation of the free time evolution of the electric �eld operator
E(t) / X cos!t + Y sin!t is converted to a controlled phase dependence E(�) / X�.
Thus, assuming that the signal state (i.e. its wave vector or density matrix) emitted by
the source does not change during the measurement time, the noise current i�(t) and
correspondingly the distributions P�(x�) furnish an image of the time evolution of the
signal wave.

2.3.1 Quantum tomography

As shown in Fig. 2.4 the measured distributions P�(x�) are the marginal distributions
of the Wigner function, integrated along a rotated coordinate axis y� = �x sin �+ y cos �:

P�(x�) =
Z 1

�1
W (x� cos � � y� sin �; x� sin � + y� cos �)dy� ; (2.42)

This is a generalization of the condition given in Eq. 2.8. Thus, the measured distribution
functions are the density projections of the Wigner function. The integral 2.42 is also
called Radon transform. It can be readily inverted by use of the inverse Radon trans-
formation [188]. This way the Wigner function can be reconstructed from the measured
data [13, 259, 229]. In more detail this is described in section 3.3.

An alternative reconstruction method for W (x; y) with a special integral kernel is
given in [53]. A third method to gain W (x; y) via summation over the density matrix
elements �nm is outlined below.

To obtain the density matrix elements in the Fock representation �nm we have to
invert Eq. 2.41. This is done by integrating the measured distributions over a set of
pattern functions fnm, which is carried out in section 3.4. The pattern functions were
�rst found by D'Ariano [51]. Subsequent analytical improvements lead to the very useful



12 Chapter 2. Theory I: Reconstruction of quantum states of the light �eld

Y

X

Projection plane

Marginal distribution

W(x,y)  

θ

xθ

Pθ(xθ)

yθ
Figure 2.4: The Wigner function and its density projection. Tomography is a general
method to infer the shape of an inaccessible object (in this case the Wigner function) from
its projections (the quadrature distributions P�(x�)) under various angles.

description in [135]. The most detailed analysis can be found in the book of U. Leonhardt
[137] (see also the review article [123]).

Once the density matrix elements are known, the distribution of any other quantum
mechanical observable may be derived. This is described for the phase distributions in
Sec. 3.4.6 and the joint number-phase distribution in Sec. 3.4.7. Other relevant evaluations
employing �nm are the determination of the mean and variance of the photon number
distribution and the state's purity (Sec. 3.4.3).

As mentioned above, it is also possible to obtain the Wigner distribution W (x; y)
by a summation over the density matrix elements �nm. Using the de�nition Eq. 2.6, and
inserting � in the Fock basis given by Eq. 3.15 results in

W (x; y) =
X
m;n

�mnWnm(x; y) (2.43)

where Wnm(x; y) is de�ned by Eq. 2.36. Since the dominant errors in the experimental
part (see Sec. 3.4.3) are systematical or statistical ones and not due to the reconstruction
method, I have so far only employed the inverse Radon transform for the evaluation of
W (x; y).

2.3.2 Alternative measurement methods

By now there exists a variety of other reconstruction algorithms that transform the pro-
bability distributions P�(x�) measured via homodyning into the density matrix [290, 53,
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241, 172, 96, 9, 173]. The application of some of them to the data measured in this thesis
is presented in section 3.5. In contrast to this, only few principally di�erent measurement
schemes have been proposed that may provide a complete description of the light �eld's
quantum state as well. These are eight port homodyning for Q-function measurements
[263, 137], also used for the determination of the quantum optical phase [169], unba-
lanced homodyning [264], and direct photon counting [7] (see also Sec. 3.5.3), which can
be combined with photon chopping [178] to possibly provide an experimentally feasible
measurement method.

2.4 Cavity equations for the parametric ampli�er

One way of realizing a quadratic interaction Hamiltonian such as the squeezing operator
of Eq. 2.21 is the two-photon generation process of parametric down-conversion [161, 266].
A strong pump wave of frequency 2! interacts with a weak signal �eld (in the limit with
zero amplitude, vacuum) of frequency !. The pairwise creation of photons in the signal
�eld occurs by splitting a 2! photon into 2 photons of frequency !. The interaction
between pump wave and signal wave takes place in a medium with a polarizability P
which exhibits a nonlinear dependency from the electric �eld E

Pi = �0 �
(1)
ij Ej + �0 �

(2)
ijk EjEk + �0�

(3)
ijklEjEkEl + ::: (2.44)

Since the relevant nonlinear term �
(2)
ijk is usually very weak, in the order of 10�12m=V ,

the interaction is enhanced by employing an optical cavity.
In the following considerations the cavity is assumed to be a standing wave cavity,

singly resonant for the subharmonic wave, with one output port of transmission T , internal
losses A, and length L, resulting in a roundtrip time � = 2L=c. The injected subharmonic
and harmonic waves are denoted by �in and �in and the outcoming waves by �out and
�out respectively. Assuming zero detuning, the equation of motion for the subharmonic
intracavity �eld � can be derived, using the standard �eld equations in nonlinear media
(see [279] and [212]):

d�

dt
= �(
l + 
c)� +

q
2
c �in � ����2 + 2

p
��� �in (2.45)

Here 
c = (1 � p1 � T )=� is the damping rate due to the input coupler transmission
and 
l = (1�p1�A)=� that due to other cavity losses. The strength of the interaction
is given by the nonlinear coupling parameter � = �h!ENL=2�

2, where ENL is the e�ec-
tive nonlinearity, described in more detail in Sec. 3.1.3. The coupling term 2

p
����in

is responsible for the phase-sensitive parametric generation, the third order term higher
power e�ects such as cascaded nonlinear interactions [271] and �nite limiting values for
parametric ampli�cation. The input-output relations

�out = �in �p��2 �out = ��in +
q
2
c�

2 (2.46)

complete the description of the system. The measured input/output powers are related
to the normalized �eld amplitudes by

P1;in = �h! j�in j2 ; P1;out = �h! j�out j2 ; (2.47)

P2;in = 2�h! j�in j2 ; P2;out = 2�h! j�out j2 ; (2.48)
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Figure 2.5: Schematic of the nonlinear interaction inside a resonator between the reso-
nant subharmonic wave � and the harmonic wave �.

whereas the circulating power is given by P1 = �h! j� j2=� . Thus j�in=out j2 and j�in=out j2
are normalized to a photon rate and j� j2 to the number of intracavity photons.

Stationary solutions for the classical analysis of the OPO threshold and the gain of
parametric ampli�cation and deampli�cation are found by setting d�=dt equal to zero. A
semiclassical analysis of the quantum noise can be carried out by linearizing Eq. 2.45 for
small 
uctuations [49]

� = �� +�� : (2.49)

Neglecting the third order term for small circulating �eld strengths and noting that an
additional incoupling term ��L;in arises from the vacuum 
uctuations entering the cavity
due to the internal losses, we arrive at

� _� = �(
l + 
c)��+
q
2
c��in +

q
2
l��L;in + 2

p
��in��

� (2.50)

The relation of quadrature 
uctuations to the 
uctuations of the �eld amplitudes is
given by

�X =
1p
2
(�� +���) and �Y =

1p
2i
(������) : (2.51)

Taking the Fourier transform of Eq. 2.50 and using the input/output relations, we �nd

�Xout =

c � 
l � �� i



c + 
l + �+ i

�Xin +

2
p

c
l


c + 
l + �+ i

�XL;in

(2.52)

�Yout =

c � 
l + �� i



c + 
l � �+ i

�Yin +

2
p

c
l


c + 
l � �+ i

�YL;in ;

where � = 2
p
��in With input variances of 1 and no correlations between di�erent

quadratures we obtain for the spectra of squeezing 	� = j�Xoutj2 and anti-squeezing
	+ = j�Youtj2

	�(
; P ) = 	0

 
1� �

4 d

(1 � d)2 + (
=�)2

!
: (2.53)

Here � = 
c + 
l is the linewidth (HWHM) of the cavity without nonlinear losses, d =q
P=Pth is the pump parameter with a pump power P = P2;in and a threshold power

Pth = 2�h!j�thj2 = �h!�2=2� of the OPA, 	0 = 1 is the spectral density of the vacuum
state, and � = 
c=� is the escape e�ciency of the resonator. The detection e�ciency �
can be modelled equivalently to the internal losses by a beam splitter with vacuum input
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placed between the detector and the cavity output. Including � in the calculations leads to
a replacement of the factor � by � �� in Eq. 2.53. Finally note that, regarding the linewidth,
the nonlinear coupling results in a line broadening (parametric deampli�cation) or line
narrowing (parametric ampli�cation) dependent on the relative phase between injected
signal wave and pump wave, so that the e�ective linewidth changes to �e = (
c+
l)(1�d)
[219].
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3.1 The setup
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Figure 3.1: Experimental scheme for generating bright squeezed light and squeezed va-
cuum with an OPA. The electric �eld quadratures are measured in the homodyne detector
while scanning the phase �. A computer performs the statistical analysis of the photocur-
rent i
 and calculates the quantum states. EOM: electro-optic modulator, DM: dichroic
mirror.

A schematic of the experiment is shown in Fig. 3.1. A miniature monolithic Nd:YAG
laser (1064 nm, 500 mW, Lightwave 122) was employed as the laser source. To reduce
the excess noise of the laser resulting from the relaxation oscillations, the laser beam �rst
traverses a high �nesse mode cleaning cavity. It is then split into three parts and directed
to the homodyne detector as the local oscillator, to the frequency doubler to generate the
pump wave for the OPA, and to the OPA for injection-seeding. The ouput wave of the
OPA is subsequently recorded by the homodyne detector.

16
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3.1.1 The mode cleaner
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Figure 3.2: Spectral density of the amplitude noise of the diode-pumped Nd:YAG laser
as a function of frequency, recorded with a homodyne detector without local oscillator.
Shown are the spectral noise densities before (dotted) and after (solid) the �lter cavity.
The third trace at the bottom refers to the vacuum noise for both cases. The peak at 500
kHz is due to the relaxation oscillation of the laser. The second peak at 600 kHz of the
trace after the �lter cavity is the frequency modulation used for locking the cavity. The
resolution bandwidth was 10 kHz.

The mode-cleaning cavity consists of two high �nesse mirrors (radius of curvature
1000 mm) coated by Research Electro Optics, Boulder and an 8 cm spacer made of Invar
(Goodfellow, Cambridge), to avoid longtime cavity drifts due to changes in the room
temperature. One of the mirrors was mounted on a piezoelectric actuator, to be able to
stabilize the cavity length to the laser frequency via the Pound-Drever locking technique
[59, 91]. To obtain the error signal, the laser itself was phase-modulated at frequencies
<900 kHz. The linewidth of the cavity was measured to be 170 kHz, which is equivalent
to a �nesse of 10 400.

The e�ect of the mode cleaner can be seen in Fig. 3.2. The amplitude excess noise of
the laser around 1 MHz was reduced by more than 15 dB. Although the cavity was not
kept in vacuum and circulating light powers were in the order of some kW, no reduction
of the �nesse within 2 years of operation was observed.

A new proposal for the usage of the mode cleaning cavity, not carried out in this thesis,
would be the spatial analysis of the light �eld [142]: In the �rst preliminary experimental
setup [28] the mode cleaner was not placed directly after the laser, but in the beam path
of the local oscillator right before the homodyne system. This way by using higher TEM-
modes of the resonator the spatial structure of the signal beam could be investigated.
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Figure 3.3: Sketch of the monolithic OPA, the center piece of the experiment.

3.1.2 The frequency doubler

The semi-monolithic doubler cavity consists of a 7.5 mm long crystal made of magnesium-
oxide-doped lithium niobate (MgO:LiNbO3) with one 
at and one R1 = 10 mm spherical
endface and an R2 = 25 mm input coupler mirror (AR(532nm), T (1064 nm)= 3:5%)
mounted on a piezoelectric actuator. The back coating of the crystal is HR for both
1064 nm and 532 nm. A frequency-locking circuit is used to lock the cavity to the laser
frequency. Amodi�ed Pound-Drever technique is employed, with electro-optic modulation
of the crystal itself. When optimized, the frequency doubler generates a 532 nm pump
wave with up to 200 mW power at 70% conversion e�ciency. Typically, the doubler is
operated with non-optimal mode-match of the input wave, emitting 150 mW at 532 nm
with 300 mW input power at 1064 nm. By varying the laser frequency, the harmonic
frequency is continuously and rapidly tunable over 20 GHz.

3.1.3 The OPA

The OPA consists of a monolithic standing wave cavity, made of magnesium-oxide-
doped lithium niobate. Besides the experiments described here, the same crystal served
as a highly e�cient frequency converter [177, 29, 213]. The endfaces of the crystal of
length L = 7.5 mm are polished spherically with 10 mm radii of curvature. One end
of the crystal is coated with a high re
ector at both 1064 (THR < 0:05%) and 532 nm,
the other side is the output coupler with transmittivity To = 2:1% at 1064 nm and high
transmission at 532 nm. With this con�guration, the nonresonant pump double passes
the resonator to enhance the nonlinear coupling, so that the threshold is reduced [14]. The
measured linewidth of the OPA is 2� = 35 MHz (FWHM), which, considering the free
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Figure 3.4: Photograph of the monolithic OPA. A match is shown for comparison.

spectral range of 9 GHz, gives a �nesse of 260 and roundtrip losses A of � 0:3% The faces
perpendicular to the crystal c-axis are coated with gold for electrooptic modulation. The
resonator is embedded in an aluminum oven whose temperature of � 120�C is actively
controlled to 10 millikelvin. The OPA is operated in degenerate mode, i.e. the resonance
frequency of the cavity mode is half the frequency of the pump wave, and the parametric
gain of the nonlinear crystal is maximized via its temperature.

The threshold power for the onset of degenerate parametric oscillation is derived from
Eq. 2.45 to be

Pth =
�2

F2ENL
; (3.1)

with an e�ective nonlinearity

ENL =
2!3d2e�
�n2c4�0

Lh(�k; �); (3.2)

where h(�k; �) is the Boyd-Kleinman factor [21], �k is the phase mismatch, � = L=2zR
is the focussing parameter, and zR is the Raleigh range. With waists of 27�m for the
! and 19�m for the 2! wave, h equals 0:655 under phase matching conditions. ENL

is determined by measurements of frequency doubling at low input powers, where the
relation P2! = ENLP

2
! holds. With a nonlinear coe�cient of de� � 5 pm/V, a threshold

power of Pth = 28 mW is calculated, which agrees with the lowest measured values.

The escape e�ciency of the OPA cavity, determining roughly speaking the fraction
of quantum noise that is emitted, is calculated to be � = To=(To + THR + A) = 0:88.
Since the very same factor is found to be the upper limit for the maximum achievable
conversion e�ciency, the previous experiments involving the OPA as a highly e�cient
frequency doubler [177] and as a highly e�cient OPO [29] con�rm this value for �.
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Although in the beginning of the experiment the laser frequency was stabilized to
the OPA cavity resonance by a frequency shifted reference beam exciting a higher order
transversal mode of the OPA, the excellent free running frequency stability of the laser,
the dimensional stability of the OPA cavity and its broad linewidth allow frequency stable
operation of the experiment without active stabilization, relative drifts being less than 10
MHz/min (at constant room temperature even less than 10 MHz/hour).

Three optical isolators (not shown in Fig. 3.1) prevent backre
ection of the laser light
from the �lter cavity into the laser, from the standing-wave frequency doubler into the
�lter cavity and from the OPA into the frequency doubler.

3.1.4 Parametric ampli�cation and deampli�cation

A central aspect of the experiment is the generation of bright squeezed light, i.e. squeezed
light with a coherent excitation. An e�cient method to achieve this consists of using the
OPA in a dual-port con�guration [221]: A weak seed wave is injected into the HR mirror
and the bright squeezed light is extracted from the output port.

To characterize the OPA we �rst investigated the classical e�ects. If the seed wave of
power Pin at ! is on resonance with the cavity, then Ps = 4PinToTHR=(To + THR+A)2 is
the output power transmitted by the OPA cavity through the To mirror in absence of the
pump. Once the pump is turned on, the output power gPs has a gain g which depends
on the power and the phase of the pump. Using Eq. 2.45, the strongest deampli�cation
factor is found as

gmin =
1

(1 +
q
Pp=Pth)2

: (3.3)

Note that it is independent of the seed power and does not explicitly depend on the mirror
transmissivities. Fig. 3.5a shows the agreement of this expression with the experimentally
measured gmin. The deampli�cation limit at threshold is 1/4 independent of the employed
resonator. The maximum ampli�cation gmax, on the other hand, depends on seed power
since it is limited by the depletion of the pump. At a �xed seed power the measured
maximum gain as a function of pump power is shown in Fig. 3.5b. By reducing the
seed power the ampli�cation factor can be increased. The inset of Fig. 3b shows this
dependence with Pp = 0:985 � Pth. Ampli�cation factors up to 3200 were obtained. With
a pump power exactly at threshold, the maximum gain is given by gmax = (4�Pth=Ps)2=3.
Note, however, that this gain factor cannot be directly used for signal ampli�cation, since
the injection of the seed wave through the HR port leads to high losses.

3.1.5 The homodyne system

From a technical perspective the homodyne system can be regarded as a lock-in detector
for the signal �eld: The quantum noise at the optical frequency ! is mixed down to the
electronically accessible RF range. This is achieved by overlapping the signal beam with
a local oscillator beam at a 50/50 beam splitter and subsequently detecting the beams of
the two output ports (Fig. 3.1).

The basic property of the homodyne detection system is a narrowband detection of
the electric �eld 
uctuations at frequencies o�set from the local oscillator frequency ! by
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Figure 3.5: Parametric deampli�cation (a) and ampli�cation (b) of a weak signal injected
into the OPA. The signal input power in (b) amounted to Pin = 40 �W. Inset: Maximum
ampli�cation vs. signal input power at constant pump power Pp � Pth. Lines: Theory,
Points: measured values.


=1.5 to 2.5 MHz, rather than at DC, to avoid technical noise at low frequencies. This
means, that we detect the correlated signal and idler waves !1;2 = ! � 
 of the OPA
output wave, which are generated by the process of non-degenerate parametric down-
conversion 2! ! !1 + !2 (cf. Sec. 3.8). For measurements covering the whole spectral
output of the OPA, leading to multiple mode reconstructions of the light �eld see section
3.9. The photodetectors contain passivated InGaAs photodiodes (ETX500, Epitaxx).
The photocurrents are ampli�ed by transimpedance ampli�ers (NE5212, Valvo) with a
bandwidth exceeding 30 MHz. The two output photocurrents are subtracted (added)
to i� (i+) by a hybridjunction (Varil) with measured 40 dB common mode rejection.
One part of the di�erence photocurrent is directed to a spectrum analyzer for variance
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measurements, the other part is further ampli�ed by a low-noise 40 dB gain ampli�er
and then mixed with an electrical oscillator of frequency 
. The intermediate frequency
output of the mixer is further ampli�ed and low-pass �ltered by a SRS 560 low-noise
ampli�er. The bandwidth is set to 100 kHz, de�ning the bandwidth within which the

uctuations of i� are detected. The suppression of a strong modulation applied to the
local oscillator is better than 20 dB. The shot noise level, determined by comparing i+
and i� when the open port of the beam splitter has vacuum input, is accurate to 0.3
dB for a wide range of frequencies. When the balancing of power in the two detectors is
optimized for a particular frequency, the accuracy is on the order of 0.2 dB. At a local
oscillator power of 2 mW the shot noise level is 14 dB above the electronic noise level of
the detectors at lower frequencies and 5 dB for frequencies above 24 MHz.

The detection e�ciency

Not only to detect high degrees of quantum noise supression but also to ensure the faith-
fulness of the quantum state reconstructions, detection e�ciency is a crucial issue in our
experiment. A thorough discussion of detection e�ciency of an experimental homodyne
system is found in the excellent article by Wu and Kimble [276].

The overall losses su�ered by a quantum state emitted by the OPA until it is recorded
can be summarized by � ��, where �, de�ned in section 3.1.3, is the cavity escape e�ciency
resulting from the losses occurring inside the optical cavity and � is the detection e�ciency,
consisting of the following three factors: modematching e�ciency, propagation e�ciency
and photodetection e�ciency.

The modematching e�ciency is de�ned to be the square of the integral over the spacial
extension of the product of local oscillator and signal wave at the beam splitter of the
homodyne system. To maximize the mode overlap, the homodyne system was mounted in
such a way that besides the beam's direction, the size as well as the position and magnitude
of the two beam waists could be controlled independently via micrometer translation
stages. Focused beams were found to be easier to adjust than parallel propagating ones.
A modematching e�ciency of more than 99% was obtained by measurement of the fringe
visibility produced from the interference of local oscillator and OPA cavity transmission
of an injected signal beam.

For the photodiodes the producer Epitaxx speci�es a typical value for the spectral
response R = generated photocurrent [A] = light power [W ] of 0.90 at 1300 nm. Sin-
ce each individual diode is tested by the manufacturer, it is possible to choose for the
quantum noise measurements those with higher responsivity (0.95-0.99) than the avera-
ge. According to the manufacturers data sheet the spectral response is almost 
at in the
wavelength range 1000 { 1300 nm, so the best expected quantum e�ciencies at 1064 nm
amount to �q = R �h!=e = 96%.

The quantum e�ciency was measured by directly monitoring the produced current
of the diode, as well as by measuring the ampli�ed current of the photodetector output,
rescaling the result by the known (measured) ampli�cation factor of the detectors elec-
tronic circuit. By both methods we obtained values between 95% and 97%, using a Laser
Instrumentation thermopile for calibration of the light power. The published 97�2% are
overestimated, and should be replaced by 96�2%. After three months operation at po-
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ω−Ω   ω   ω+Ω
Figure 3.6: Sketch in frequency space for the measurement of squeezed states with a
coherent displacement: The envelope, given by the cavity resonance with width 17.5 MHz,
describes the frequency range in which the quantum noise is altered due to the parametric
interaction. The vertical center line (linewidth 10 kHz, thus negligible compared to the
cavity or detection band width) represents the injected signal. Via homodyne detection
the two side bands, well within the cavity linewidth, are measured simultaneously.

wers below 5 mW no degradation of the e�ciency was found. After more than one year
of operation, the e�ciency dropped by some percent (to as much as 80% for two diodes
being exposed to light powers >10 mW over a prolonged period of time).1

Together with propagation losses of 2% , the detection e�ciency can be estimated to
be � = 93% � 3%. By measurements of the variance of the squeezed and anti-squeezed
quadrature described in section 3.2.1 an overall detection e�ciency of 80% including the
escape e�ciency can be inferred, which agrees within 3% with the value � � � = 82%
derived above.

3.1.6 Scheme for the generation of bright squeezed states

We con�rmed experimentally, that the quantum noise of the OPA output measured by the
homodyne system around the measurement frequency 
 is not changed by the injection of
the 100 pW seed beam into the OPA. To realize a coherent excitation at the measurement
frequency 
, a part of the optical power of the seeding input has to be transferred to the
sidebands at 
. This is accomplished by a phase-modulator placed before the OPA cavity
driven at frequency 
 with a modulation index � � 1 (electro-optic modulation of the
nonlinear crystal is also possible). The amplitude of the sidebands �E0 is determined by
the strength of the cavity output �eld E0 which depends on the relative phase � between
pump and signal wave and by the modulation index �. The carrier frequency ! is kept
on-resonance with the cavity and the two \bright" sidebands ! � 
 are well within the
cavity bandwidth �=2� = 17.5 MHz (HWHM) (see Fig. 3.6).

1Apart from uncertainties regarding the absolute power calibration of the reference power meter, the
thermopile, speci�ed by � 2%, a possible inaccuracy in these measurements which may lead to a lower
detection e�ciency in the actual measurements than the one expected by the individually measured
e�ciencies is the following: The diodes response is slower at the edge regions of the photodiode than in
the center part. This may lead to a lower AC-response than the measured DC-e�ciency if the beam's
waist (80�m in our setup) is comparable to the detector's area (500�m) [276, 268].
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In the semiclassical picture we may write the Fourier components at the frequency 
0

of the �eld's quadratures emitted from the output coupler as

X(
0) = E0 �(

0) + �E0(�(


0 � 
)� �(
0 + 
)) +Xn(

0);

Y (
0) = Yn(

0); (3.4)

where � is the Dirac delta-function and Xn, Yn are the broad-band quantum 
uctuations.
The electric �eld of the signal wave can now be written as

ES(t) �
Z
X(
0) cos(! + 
0)t d
0 +

Z
Y (
0) sin(! + 
0)t d
0: (3.5)

Due to the very small ratio of HR transmission (< 0:1%) to output coupler transmission
(2:1%), the transmitted sidebands and their quantum 
uctuations are strongly attenuated.
The quantum 
uctuations of the signal wave inside the resonator originate essentially from
the vacuum 
uctuations entering through the output coupler. The injected seed wave
amplitude as well as the 
uctuations are modi�ed inside the resonator by the interaction
with the 2! pump wave: The quadrature 
uctuations out-of-phase with the pump are
deampli�ed (squeezed), the in-phase quadrature 
uctuations are ampli�ed. Similarly, the
seed wave is deampli�ed if it is out of phase and ampli�ed if it is in phase with the pump
wave. Since the relative phase � between seed wave and pump wave is controlled manually
by a mirror attached to a piezoelectric actuator, deampli�ed amplitude-squeezed light,
ampli�ed phase-squeezed light and light squeezed in an arbitrary quadrature are easily
generated. The coherent excitation of the sidebands is controlled coarsely by changing the
power of the seed wave, �ne control is achieved by varying the EOM modulation strength.
By turning the modulation o�, we obtain squeezed vacuum, by blocking the OPA pump
wave, we are left with coherent states.2

3.1.7 Relation of the measured photo current to the quantum

noise

At the beam splitter, the signal wave is mixed with the local oscillator wave ELO(t) �
cos(!t+ �). The mixed waves at the two output ports of the beam splitter are given by

E1 =
1p
2
(ES + ELO) and E2 =

1p
2
(ES � ELO): (3.6)

Discarding the second order noise terms, DC contributions as well as terms oscillating
with twice the optical frequency !, the di�erence current of the two photodetectors at

2Note, that there are di�erent interpretations of the notion \bright squeezed light". Many authors refer
to it as light with coherent excitation in the carrier, with squeezed sidebands without coherent amplitude.
This is sensible for experiments, where exactly such a light source is of use, for example the spectroscopy
experiments described in [184]. Since the method of quantum state reconstruction renders possible
detailed comparisons between quantum optical theory and experiment the notion \bright squeezed light"
is employed in this thesis in the same way standard texbooks of theoretical quantum optics [266, 137, 218]
use it for the description of single mode states.
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the detection frequency 
 is given by

i�(
; �) � jE1j2 � jE2j2
� ELO �ES

� jELOj cos(!t+ �)[

(�E0 +Xn(
)) cos(!t+ 
t) + (��E0 +Xn(�
)) cos(!t� 
t)]

+Yn(
) sin(!t+ 
t) + Yn(�
) sin(!t� 
t)]

� (�E0 +Xn(
)) cos(
t� �) + (��E0 +Xn(�
)) cos(�
t+ �)

+Yn(
) sin(
t� �) � Yn(�
) sin(�
t� �): (3.7)

The crucial step of this equation array is the third transformation, in which the mode pair
at �
 is selected and the condition ELO � E0 is used. The homodyne detector output
current i� is mixed with an electrical local oscillator � sin(
t +  ), phase-locked to the
modulation source, and then low-pass �ltered with 100 kHz bandwidth. The resulting
current is

i
(�; t) � [(Xn(
; t) +Xn(�
; t)) cos � � (Yn(
; t) + Yn(�
; t)) sin �] sin (3.8)

+ [(2�E0 +Xn(
; t)�Xn(�
; t)) sin � + (Yn(
; t)� Yn(�
; t)) cos �] cos ;

where Xn(
; t); Yn(
; t) are the quantum 
uctuations in a 100 kHz wide band centered at

, transferred to DC. The time dependence of the 
uctuations is due to the �nite (non-
delta) detection bandwidth. Setting the phase of the electric local oscillator such that
cos = 1 and varying the local oscillator phase � linearly in time, the mean homodyne
current hi
(�; t)i / 2�E0 cos � oscillates harmonically and exhibits in addition the phase
dependent 
uctuations with the chosen bandwidth of 100 kHz.

3.2 Quantum state measurements

While the local oscillator phase was swept by 2� in approximately 200 ms, the i
-data
were recorded using an A/D board T3012 of the company IMTEC, Backnang, with an
amplitude recording resolution of 12 bit. The maximum number of recorded samples is
524 288, the board's frequency range is 0-30 MHz.3

The �rst step of the state measurement consists in determining the standard deviation
�Evac of the electric �eld of the vacuum state, to use it for the calibration of the noise of
all generated states. Its value is obtained by a measurement of the noise current i
 with
the homodyne detector signal input blocked. It serves as the unit of measurement for the

3During the time of this thesis the data caption was improved in three steps: The �rst sets were taken
by an HP digitizing oscilloscope 54504A. Due to the memory limitation of 2000 sampled points, several
recorded traces had to be overlayed, to gain su�cient statistical information. This led to an arti�cial
phase di�usion e�ect of the reconstructed states. As a second instrument a Nicolet 400 oscilloscope
with a memory depth of 256000 points was employed. Here the e�ect of unequal sampling of the
256 amplitude channels (8 bit resolution) was the most disturbing e�ect. This e�ect can be partially
compensated, by recording the response probability of all 256 channels and calibrating the measured
noise traces accordingly. The measurements in [28] were done this way (see also the Konstanz T-Shirt of
A.G. White).
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Figure 3.7: Spectrum of one of the recorded noise traces, showing the bandwidth of 100
kHz within which the modes of the light �eld are detected.

electric �eld E0 of the signal wave (or more precisely of its sidebands e0 = 2�E0 at 
).
In order to verify that the system is not in
uenced by artefacts of electronic noise, it is
necessary to check the data's frequency spectrum by taking the Fourier transform of the
recorded homodyne noise. A typical measurement is shown in Fig. 3.7.

To test the measurement system, we veri�ed the independence of the variance of the
coherent state's electric �eld from the degree of coherent excitation. The traces shown
in Fig. 3.8 demonstrate that the angle-independent variance is equal to (�Evac)2 for all
three traces. The methods employed in our experiment enable us to detect coherent
states of almost arbitrary �eld strength as long as the power of the signal beam is small in
comparison with the local oscillator power. Accurate reconstructions are however limited
to states with average photon numbers up to 40 (e0 < 9), since the resolution of the A/D
board is limited.

Immediately after the data are stored in the on-board memory of the A/D converter,
the probability distributions are sampled. For this, the traces are subdivided into 128
equal length intervals within which the local oscillator phase is approximately constant.
These individual time traces may be regarded as the quantum trajectories of a particular
quadrature x�. Histograms of 256 amplitude bins for each quantum trajectory are formed,
whose absolute bin width is normalized using as reference the distribution of a vacuum
state. Note that the bin resolution of these probability distributions P�(x�) (8 bit) is
smaller than the one gained from the noise traces. Averaging over several amplitude bins
serves to avoid errors due to uneven sampling of the A/D-board's channels. Fig. 3.9 shows
selected measured quadrature probability distributions for one of the coherent states of
Fig. 3.8. In the actual experiment these distributions are formed on-line, thus in time
intervals of � 8 s one can watch the wave packet moving back and forth in a 4�-oscillation
of the light �eld. This motion of the wave packet in a harmonic potential was historically
the �rst example of quantum dynamics, studied by Schr�odinger in 1926 [222]. The on-line
monitoring allows a constant check for electrical or optical disturbances and makes it
possible to change experimental parameters directly to precisely control the state of the
light �eld to be measured.
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Figure 3.10: Noise traces i
(t) (left) and quadrature distributions P�(x�) (right) of
generated quantum states. From the top: Vacuum state, squeezed vacuum state. phase-
squeezed state, state squeezed in the � = 48�-quadrature, amplitude-squeezed state. The
noise traces as a function of time show the electric �elds oscillation in a 4�-interval for
the upper four states, whereas for the squeezed vacuum (belonging to a di�erent set of
measurements) a 3�-interval is shown. The quadrature distributions can be interpreted as
the time evolution of wave packets (position probability densities) during one oscillation
period. Oscillatory motion as well as \breathing" of the wave packet can be observed.
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The left column of Fig. 3.10 shows the whole set of recorded noise traces of di�erent
squeezed states generated by the OPA as well as the reference trace of the vacuum.
They can be considered to be the experimental counterpart of the theoretical depictions
of squeezed states introduced by Takahasi [240] and Caves [41]. The right column of
Fig. 3.10 presents selected sampled corresponding quadrature probability distributions
for the generated states. All distributions are found to be Gaussians. This is expected,
since the states are generated from a coherent state with a Gaussian Wigner function via a
second-order nonlinear interaction. Note that due to the fact that the generated squeezed
states are mixed states (see Sec. 3.4.4) the description of the states by wave functions is
not valid anymore. Nevertheless the behavior of the quadrature probability distributions
is in principle the same as the one of the wave packet of a corresponding pure squeezed
state. This can be seen when comparing the analytical formula for the distributions for
the bright squeezed states

P�(x) =
1p
�w�

exp

2
4�

 
x� e0 cos(� � �)

w�

!235 (3.9)

with the expression for the wave packet given in Sec. 2.2.1. As before e0 denotes the
amplitude and w� =

p
a2 cos2 � + b2 sin2 �, with a2 = Var(Xsq(
)) and b2 = Var(Xas(
))

being the degree of squeezing and anti-squeezing and � the squeezing angle

3.2.1 Squeezing measurements

Experimentally the amount of squeezing and anti-squeezing is obtained by determi-
ning the minimum and maximum variances of the measured quadrature distributions. A
minimum of -6 dB � 0.25 dB (= 0.25 linear scale) for the squeezed vacuum mode was
detected, which is among the highest values of noise suppression of a quadrature of the
light �eld achieved so far [184, 112, 30, 221]. For the bright squeezed light a minimum
value of -5.2 dB (= 0.3) was obtained, due to phase instabilities of the seed wave and
maybe noise introduced by the frequency modulation in the presence of the pump wave.
The anti-squeezing amounted to 12-14 dB (= 15.8-26.9) for the states presented here. As
shown in Fig. 3.11, these values agree well with the results of simultaneous measurements
of i
 with a spectrum analyzer.

For the measurement shown, the pump power was approximately 3/4 the threshold
power. (A little less for the bright squeezed states to avoid strong 
uctuations of the mean
amplitude e0). Increasing the pump power further led to a higher gain, but additional
noise degraded the squeezing. We believe this is mainly due to classical noise of the pump
wave which is not completely removed by the �ltering cavity. This is indicated by the
presence of modulation signals of the frequency doubler in the OPA output spectrum. In
this regime the measured values deviate from Eq. 2.53 (see also Ref. [275]).

From measurements at lower pump powers a total e�ciency of detection of

� � � = (b2 � 1)(1 � a2)

b2 + a2 � 2
= 80% (3.10)

can be inferred, which agrees within 3% with the measured individual detection e�cien-
cies. Correcting for �, the inferred squeezing amounted to 7.6 dB outside the resonator.
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Figure 3.11: Squeezed vacuum measurements. Upper picture: Variances of the measured
quadrature distributions for 128 local oscillator phases (dots) in comparison with theory
(line). Lower picture: Spectrum analyzer plot of the electric �eld variances. Trace (i):
Var(X�) vs. the phase of the local oscillator �. Trace (iii): Var(X�) with the phase � = 0
�xed manually for minimum noise, resulting in an averaged variance Var(Xsq) = 6 dB �
0.25 dB below the vacuum level. The shot noise level is given by the average of trace (ii).
The resolution bandwidth was 100 kHz, the video bandwidth 1 kHz.
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3.2.2 Higher order squeezing
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Figure 3.12: Measured phase dependence of the 2nd (smallest), 4th, 6th, 8th and 10th
(largest phase dependence) order statistical moment of a 6 dB squeezed-vacuum state.
The local oscillator phase varies by � 3�. The odd statistical moments of the quadrature
distributions are equal to 0.

Not only the variance, the second order statistical moment can take values below
that of the vacuum �eld, but also the higher even order statistical moments, as Hong
and Mandel [95] predicted in 1985. Having sampled the complete distributions fP�g, this
higher-order squeezing of a quantum �eld is readily veri�ed in our experiment up to the
tenth's statistical moment. Fig. 3.12 shows a 3�-interval of the measured higher order
moments of a 6 dB squeezed-vacuum state. Clearly, the higher the moment, the stronger
is the phase dependence. This suggests that, by measuring the higher order moments,
a more sensitive squeezing detection, i.e. detecting �elds with a very weakly squeezed
quadrature, should be possible.

This did not turn out to be true: At squeezing degrees of 0.1-0.3 dB both the spectrum
analyzer signal as well as the 10th order moment phase dependence was lost in noise.
Nevertheless, this method can be quite useful when trying to detect states of the light
�eld that do not show a strong phase dependence in the variance, but in higher order
moments, such as the star state presented in section 3.11. Here, a measurement of the
3rd order moment could give the �rst experimental proof of existence.
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3.3 Reconstruction of the Wigner function

The Wigner functions of the measured states are obtained via the Inverse Radon Trans-
form, the direct inversion of equation 2.42:

W (x; y) =
1

4�2

1Z
�1

dx0
1Z

�1
drjrj

�Z
0

d� P�(x
0) exp[ir(x0 � x cos � � y sin �)] (3.11)

A derivation can be found in [102] or [166]. It is important to note that, due to non-unity
detection e�ciency �, the equation above does not exactly yield the Wigner function but
the s-parametrised phase space distribution function W (x; y; s)[38], the convolution of
the original Wigner function with a Gaussian of width s. The parameter s is given by
s = 1 � 1=� = �0:064 [134]. W (x; y;�1) represents the Q-function, W (x; y; 0) Wigner's
original distribution. Data taken with e�ciencies � < 0:5 cannot be used for quantum
state reconstruction, since they do not correspond to a meaningful phase space distribution
[52].

A second issue to be aware of is that the numerical implementation of the inverse
Radon transform contains a �ltering process which reduces the faithfulness of the recon-
struction.

To analyze the process of data �ltering Eq. 3.11 can be rewritten as

W (x; y) =
1

4�2

�Z
0

d�

1Z
�1

dx0 P�(x
0) g(x0 � �) ; (3.12)

where � = x cos � � y sin � and

g(x) =

1Z
�1

drjrj exp(irx): (3.13)

The process of �ltering occurs in the evaluation of the angle and data independent function
g(x). The integral has to be approximated, since the data are given in discrete steps in x.
Usually this is done by introducing a cut-o� frequency rmin; rmax for the integration over
r, chosen with respect to the spatial x-extension of the smallest features the measured
distributions contain. To be able to determine the in
uence of data �ltering quantitatively,
we approximated g(x) by means of quadratic regularization as presented in [102]:

g�(x) =

1Z
�1

drjrj exp[��r2 + irx]: (3.14)

As � goes to zero the function reduces more or less to a �-peak at zero. Numerically
g�(x) is evaluated using the Dawson integral [185]. Figure 3.14 shows examples of g(x)
approximated by the two di�erent methods.

In the reconstruction algorithm, �ltering with a factor � is equivalent to a convolution
of the Wigner function with a Gaussian of width

p
2�. Thus detection losses and �ltering
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Figure 3.13: Reconstructed Wigner functions for the states of Fig. 3.10. From the top:
Vacuum state, squeezed vacuum state, phase-squeezed state, state squeezed in the � = 48�-
quadrature, amplitude-squeezed state. The ripples at the base of all reconstructions are
due to the �nite number of angular divisions of the noise trace.
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Figure 3.14: Filter function g(x) for the Inverse Radon Transform. The grey oscillating
curve shows an approximation via cut-o� frequency, the black one an approximation via
quadratic regularization (the method employed in this thesis).

are directly comparable and can be quantitatively described by the s-parameter of the
reconstructed quasi-probability distribution. For the experimentally given discrete x-steps
of � 30/256 (in units of the variance of the vacuum 
uctuations), � values of 0.002 to
0.01 gave satisfying results. Applying the distributive law for convolutions (f � g�) � g� =
f � gp�2+�2 , where g� and g� are Gaussians of width � =

q
(1 � 1=�)=2 and � =

p
2�,

yields for � = 0:002 a total value of s = 0.072. Thus, distortions due to the �ltering
process are small in our experiment and our reconstructed distributions are in fact very
close to the states' Wigner function.

The results of the numerical inversion are presented in Fig. 3.13. The shown Wigner
functions are in good agreement with the theoretical expression for bright, non-minimum-
uncertainty squeezed states, given in Sec. 2.2.1. Note that for the theoretical calculations
a coordinate system was used in which the state is squeezed along the x-axis and anti-
squeezed along the y-axis combined with a displacement in an arbitrary direction in phase
space. In contrast to this in the experiment the squeezing angle is changed by a constant
angle of displacement. This corresponds to a coordinate rotation x = x0 cos �+x�=2 sin�,
y = �x0 sin�+x�=2 cos �, when comparing Eq. 2.25 with Fig. 3.13. For the bright squeezed
light it can be clearly seen how a change of the angle � between pump and OPA-input
signal corresponds to a rotation of the squeezed Wigner function in phase space.
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3.4 Reconstruction of the density matrix

A di�erent view of the generated states is provided by their density matrices � in the
Fock basis. Here the state is described in terms of energy eigenstates, in contrast to the
description by �eld components discussed in the previous paragraph. The density matrix
is obtained from the measured distributions via integration over a set of pattern functions

�nm =

�Z
0

d�

1Z
�1

dx� P�(x�) e
i(n�m)� fnm(x�) : (3.15)

According to [199] the pattern functions are just the �rst derivatives of the product
of regular and irregular wave functions

fnm(x) =
@

@x

h
 n(x)'m(x)

i
: (3.16)

Both wave functions represent energy eigenstates of the harmonic oscillator. The irregular
wave function 'm(x) is the non-normalizable solution to the same energy eigenvalue as
normalizable one  m(x) de�ned in Eq. 2.13. Using Eq. 3.16 a very e�cient algorithm can
be implemented for the computation of the pattern functions via the recursion relations
of  m(x) and 'n(x). The exact procedure can be found in [135]. It was tested up to
n = m = 100 to work well with both experimental and synthetic data. Fig. 3.15 shows
two of the pattern functions demonstrating the structural similarity to the corresponding
energy eigenfunctions.
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Figure 3.15: Pattern functions f00 (dotted) and f14 (solid). The corresponding products
of energy eigenstate wave functions  0(x) 0(x) and  1(x) 4(x) exhibit the same structure
regarding the number of oscillations, minima, and maxima.
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3.4.1 Photon number distributions
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Figure 3.16: Photon number distributions for the squeezed states of Fig. 3.10. Solid
points refer to experimental data, histograms to theoretical expectations.
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The density matrix' diagonal elements �nn = p(n) are the occupation probabilities of
the number states jni. Note that for the diagonal elements Eq. 3.15 becomes independent
of the phase angle �. Thus for photon number measurements it su�ces to detect only the
phase averaged state. This is important for experimental setups, where local oscillator
and signal wave do not have a �xed phase relation to one another [163]. Historically,
the characterization of optical quantum states was �rst pursued using photon counting
and was applied to study the statistics of thermal and coherent light [4, 69] as well as
sub- and super-Poissonian statistics [225, 242, 189]. In comparison with these earlier
results the method of quantum state reconstruction o�ers the possibility to obtain very
precise data of the photon statistics with near unity quantum detection e�ciency, single
photon resolution, for arbitrary low photon numbers. This enabled us to resolve distinctly
quantum features of non-classical light that have been unobservable previously. Fig. 3.16
shows the photon number distributions for the squeezed states from Figs. 3.10, 3.13. (Since
the vacuum state contains no photons, it is not depicted here). For the bright squeezed
states one can see how a simple rotation of the squeezing ellipse with respect to the
coherent excitation in phase space changes the photon distribution function substantially.
The odd/even oscillations in the photon number distribution of the squeezed vacuum
state are a consequence of the pair-wise generation of photons. They can be explained
equivalently by quantum interference e�ects in phase space (see Sec. 3.4.5). Note that due
to the coupling to the outer environment (losses) the odd photon numbers do not vanish
completely.

All distributions shown are strongly super-Poissonian, Var(n) > hni. For amplitude-
squeezed light this seems counter-intuitive, since reduced amplitude noise should imply
reduced intensity (photon number) noise. An explanation is given by the expressions for
photon number average and variance for general (non minimum uncertainty) squeezed
states[57]:

hni = 1
4
(a2 + b2 � 2) + 1

2
e0

2

Var(n) = 1
8(a

4 + b4 � 2) + 1
2e0

2(a2 cos2�+ b2 sin2�)
(3.17)

For states with a large amplitude e0, the variance of the amplitude quadrature a2 cos2 �+
b2 sin2 � indeed determines the characteristics of the photon number distribution. Howe-
ver, in the regime of low amplitudes, when coherent excitation and quantum noise are
comparable in size, the �rst terms in Eq. 3.17, �guratively the photon content of the
quadrature 
uctuations, play a signi�cant role. (For the relation between squeezing and
sub-Poissonian photon statistics see also [149, 111, 289]).

We adjusted the experimental parameters to a2 = 0:43; b2 = 3:3 (reduced squeezing
and anti-squeezing) and e0 = 4:12 to obtain amplitude-squeezed sub-Poissonian light. Its
Mandel-Q-parameter (Var(n)� hni) =hni = �0:45 is to my knowledge the lowest value
achieved so far using optical nonlinear frequency conversion techniques [54].

Fig. 3.17 shows the photon number distribution for the sub-Poissonian amplitude-
squeezed state in comparison with those of a Poissonian coherent and a super-Poissonian
phase-squeezed state with aproximately equal average photon numbers. Comparing with
Fig. 3.16, obviously reconstructions of states with lower mean photon number are more
precise, lead to better agreement with theory (see Sec. 3.4.3).
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Figure 3.17: Photon number distribution of an amplitude- and a phase-squeezed state in
comparison with a coherent state of the same amplitude. Solid points refer to experimental
data, histograms to theory. The amplitude-squeezed state shows a strong sub-Poissonian
statistics. The deviation of photon number average and variance from their theoretical
expectations is less than 2%.

To relate the values found for the average occupation number hni to the actually
measured powers, we notice that hni is the average photon 
ux per unit bandwidth. p(n)
is the probability that an ideal photon counter would register n photons per Hz bandwidth
within 1 s. Given our detection bandwidth of 100 kHz set by the lowpass �lter, a state
with hni photons implies a total photon 
ux of hni � 105 photons/s � 0:02 � hni pW power
distributed over the 100 kHz wide sidebands at �
. For a coherent state this light power
is concentrated in the coherent excitation e0. For a bright squeezed state the 
ux in the
sidebands arises partly from the monochromatic coherent excitation, and partly from the
wide-band (and, on the scale of 100 kHz, white) noise power of the quantum 
uctuations.

The total output power of the OPA consists of the transmitted seed wave power,
Ps � 100 pW, plus the wide-band contribution of the quantum 
uctuations. Integration
over the squeezing spectrum of Eq. 2.53 results in a contribution 2�es��Pp=(Pth � Pp) =
6:5 � 108photons/s � 100 pW if Pp = 0:9 � Pth: Thus the total output power is � 200 pW.
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3.4.2 Density matrices

The density matrices up to n=25 for the three states of Fig. 3.17 are shown in Fig. 3.18.
Due to the states' re
ection symmetry in phase space, it is always possible to choose a basis
in which their density matrices in the Fock representation are real. For the coherent state
and the phase-squeezed state all elements �nm are positive. For the amplitude-squeezed
state an oscillatory pattern in the o�-diagonal elements is observed (see below).
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Figure 3.18: Reconstructed density matrices (absolute values) of the three states of
Fig. 3.17: (a) sub-Poissonian amplitude-squeezed state, (b) coherent state, (c) phase-
squeezed state. The bump around n �18, m �12 for the amplitude-squeezed state is
a characteristic feature explained in the text.
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Figure 3.19: Reconstructed density matrix of the squeezed vacuum state (a2 = 0:25; b2 =
26:8). Along the diagonal and the near o�-diagonals the elements alternate in magnitude,
which can be explained by quantum interference in phase space. Odd o�-diagonals are
zero within the error limit, due to the symmetry of the state's distribution in phase space,
W (x; y) = W (�x;�y)

The reconstructed density matrix of the squeezed vacuum is shown in Fig. 3.19. As
has been mentioned for the photon number distribution, the odd/even oscillations in the
diagonal and near o�-diagonals are a striking evidence of the two-photon downconversion
process. In more detail this is analyzed in the following section.

On a larger scale, the density matrix of a strongly amplitude-squeezed state exhibits a
chessboard pattern similar to the one of a squeezed vacuum state. Equivalently the pattern
can be explained by the state's symmetry in phase space and the Schleich-Wheeler oscil-
lations in the photon number distribution. To some extend this can be seen in Fig. 3.20,
showing a contour plot of the density matrix of the amplitude-squeezed state of Fig. 3.10.
Since the detection e�ciency was not high enough to observe the Schleich-Wheeler oscil-
lations for bright squeezed states, the structure of the pattern seen in Fig. 3.20 is purely
diagonal (symmetry) and not cross diagonal (interference e�ects).

This data analysis may be extended with the goal of taking into account the detection
e�ciency in our algorithms, thus trying to reconstruct the photon statistics of the signal
before detection. In the photon counting picture the e�ect of losses in the detected photon
number distribution can be understood �guratively very easy: If a photodetector with
e�ciency � detects the number state jni, the probability Pm to observem photoelectrons is
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Figure 3.20: Contour plot of the reconstructed density matrix of the amplitude-squeezed
state of Fig. 3.10. The diagonal pattern due to the state's symmetry in phase space is
clearly recognizable.

given by the probability �m to generate m photoelectrons times the probability (1��)n�m
not to observe the n � m lost photons, times the combinational factor

�
n
m

�
, since the

ordering of the photons is not known. Thus we arrive at a Bernoulli distribution [208]:

P (n)
m =

 
n

m

!
�m (1 � �)(n�m): (3.18)

This expression can also be derived via the theoretical model of coupling the undisturbed
Hamiltonian to an external heat bath [159], here � = e�
t, where 
 is the coupling constant
to the external reservoir (= decay time).

By applying the inverse Bernoulli transform to the reconstructed photon statistics the
state's original photon number distribution can be obtained [117]. (Direct inclusion of
detection e�ciencies in the pattern functions of the reconstruction algorithm are based on
the same ideas [52]). However, since this way to the detected photon number probability
for n all probabilities for photon numbers> n contribute, the reconstruction errors increa-
se very rapidly even for small photon numbers n, thus no meaningful results were obtained
this way. The analysis of the squeezed vacuum state and the amplitude-squeezed state
with consideration of �nite detection e�ciency by more powerful reconstruction methods
is described in section 3.5.1.

3.4.3 Comparison to theory

In general, all theoretical estimates were done numerically, using for comparison den-
sity matrices which were computed from calculated ideal marginal distributions. For the
special case of the coherent and squeezed vacuum state the analytical expressions derived
in Sec. 2.2.1 were used as well. Since the comparison theory-experiment is similar for all
reconstructed states, it is shown here explicitly only for the squeezed vacuum state.
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Figure 3.21: Errors for the density matrix of the squeezed vacuum state.

As pointed out in Sec. 2.2.1 the measured squeezed vacuum state is a mixed state.
The issue of purity is adressed in Sec. 3.4.4. Considering the measured state as a squeezed
thermal state with a degree of squeezing r and a number of thermal photons nT we �nd
for the experimental values a2 = 0:25 and b2 = 26:8

r =
1

2
ln
�
a

b

�
= 1:17 and nT = ab� 1 = 1:6: (3.19)

Fig. 3.21 shows the discrepancy between the theoretical expectation of � given by Eq. 2.37
and the reconstructed matrix of Fig. 3.19. An estimate for the upper limit of the experi-
mental reconstruction error of 0.01 is given by the largest density matrix element 6= �00 of
the vacuum state. Within this error limit the reconstructed density matrix of the squee-
zed vacuum state agrees with its theoretical estimation up to n=12. Usually up to n=60
the error is bounded by 0.02. These errors are still much larger than the purely statistical
ones calculated in [135]. The main contributions to the overall error (in estimated order
of importance) are:
(a) Phase 
uctuations between signal and local oscillator wave (de�nition of the angle �)
(b) o�set drifts of the noise current
(c) amplitude and phase 
uctuations of the pump wave
(d) electronic digitizing and ampli�cation noise
(e) amplitude 
uctuations of the local oscillator and imbalance of the homodyne system.

3.4.4 Purity of the measured quantum states

Another important feature of a quantum state that can be read o� its density matrix is
its purity: The trace of the square of the density matrix is a measure of the deviation
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of the state from a pure one. For pure states Tr�2 = 1. This was veri�ed in very good
agreement with theory for the coherent state of Fig. 3.18. For the bright squeezed states
we have

Tr�2 =
Z Z

�(x; x0)2dxdx0 = 2�
Z Z

W (x; y)2dxdy =
1

ab
: (3.20)

Thus the larger the area ab of the ellipse of the Wigner function's contour, the more
pronounced the mixed character of the quantum state. For the squeezed states of �gure
3.18 Tr�2 amounted to 0.82-0.85 in agreement with the theoretical value given by 1=ab. For
the stronger squeezed states of �gure 3.13 the agreement of Tr�2 � 0:39 with 1=ab � 0:45
is reduced, since Fock states with high n contribute signi�cantly to �, but could not be
accurately reconstructed from the data. The e�ect of the cut-o� due to the �nite number
nmax of reconstructed density matrix elements can be seen in the table below for the
squeezed vacuum state with a2 = 0:25, b2 = 26:8) 1=ab = 0.39:

nmax Tr� Tr�2 hni �2n

exp 20 0.92 0.33 2.0 7.9

theo 20 0.92 0.33 2.0 7.9

exp 40 0.99 0.38 5.7 61.8

theo 40 0.99 0.39 5.6 59.8

The signi�cant deviation from pure states arises mostly from loss experienced in the
OPA-cavity and during propagation and detection. The fact that in general the value
Tr�2 = 1=ab is smaller for the generated squeezed states than the values expected for the
given high overall detection e�ciency, is due to the fact that the states' mixed character
is also caused by additional noise of the pump beam. The higher value of the photon
number variance in the experiment in comparison to theory is a general feature of all
reconstructed states, due to arti�cial oscillations at high photon numbers. The trace of
� is just the summation over the photon number probabilities and should amount to 1 in
the ideal case.

3.4.5 Photon number oscillations and phase space interference

Oscillations in the photon-number distribution are by themselves not a signature of a
nonclassical state, since classical states, generated via superpositions of coherent states,
can also display such oscillations. Following an argument of Zhu and Caves [287], a
criterion for a nonclassical photon number oscillation would be, that the distance of
adjacent peaks at a photon number n are closer together than the local width 2

p
n of a

Poisson distribution. This is undoubtedly the case for the odd/even oscillations observed
here. The nonclassical character of these oscillations is elucidated by the concept of
interference in phase space which was developed by Schleich and Wheeler in 1987 [214,
215, 216].

The basic idea can be understood easily by calculating the photon number probabili-
ties via the Wigner distribution (see Eq. 2.34). For a squeezed thermal state with W (x; y)
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given by Eq. 2.25 we have

pn = 2�

1Z
�1

dx

1Z
�1

dy W (x; y)Wn(x; y) ; (3.21)

where

Wn(x; y) =
(�1)n
�

exp(�x2 � y2)Ln(2x
2 + 2p2) ; (3.22)

is the Wigner function of the n-Fock state, Ln is the Laguerre polynomial. The shape of
Wn(x; y) is circular symmetric with oscillations of increasing amplitude from the center
to its main characteristic, the outermost ring.

From a geometrical viewpoint, the integrand can be sketched as follows:

Figure 3.22: Areas of overlap of the Wigner functions of a squeezed vacuum state and a
Fock state.

The main contribution to the integral stems from the two overlap regions of the
elliptical area within the contour of the squeezed vacuum state with the outer ring of
the Fock state Wigner function. The crucial point is the separation of these two regions,
causing an interference analogous to the interference patterns occurring in the double slit
experiment. It becomes visible in the oscillations of the photon number distribution.

It can be readily seen, that this idea cannot be extended straightforwardly to mixed
states. If the area of the ellipse grows, the interference pattern would remain just the same
according to the ideas outlined above. This cannot be correct, since for a purely classical
state with 1 < a < b we don't expect to see any photon number oscillations. The solution
to this paradox is, that quantum mechanical interference occurs only between pure states.
To estimate the in
uence of the statistical mixture, we have to write the experimentally
generated mixed squeezed vacuum state as a sum of pure states. This is done using
the notion of the squeezed thermal state S(r) �

T
Sy(r) described in section 2.2.1. The



3.4. Reconstruction of the density matrix 45

squeezing operator acts on each Fock state jni in the sum of Eq. 2.29. These squeezed
number states have been analyzed in [210, 114, 168]. The Wigner function's contour of
S(r) jni has the form of an elliptically distorted ring, which results in four overlap regions
in a plot analogous to Fig. 3.22 [114]. The interferences of these four regions are summed
up for all n in Eq. 2.29, which washes out the photon number oscillations for states with
a high number of thermal photons nT . A detailed calculation of the oscillatory character
of the density matrix elements of non-minimum-uncertainty squeezed vacuum states and
its relation to phase space interference can be found in Ref. [133]. The good agreement
of the experimental data presented here with asymptotical expressions derived from the
concept of phase space interference is shown there as well.

3.4.6 Phase distributions of squeezed light

The de�nition of a quantum mechanical phase operator has been a subject of intense
interest in the quantum optics community [145]. Several possible de�nitions exist, which
are equally well usable from the point of view of quantum state reconstruction, as has been
shown by a comparison of di�erent phase operators by Beck et al. [11]. The Pegg-Barnett
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Figure 3.23: Pegg-Barnett phase distribution for the states of Fig. 3.18 in comparison
with a coherent state of the same amplitude. A pronounced narrowing of the phase
distribution for the phase-squeezed state is found. Solid points refer to experimental data,
lines to theoretical expectations.
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Figure 3.24: A bifurcation of the phase distribution occurs when the amplitude-squeezed
state is translated closer to the phase space origin. Shown here are the Pegg-Barnett phase
distributions for two amplitude-squeezed states with amplitudes e0 before (a) and after
(b) the bifurcation point, where the two maxima of the phase distribution split, (c) the
squeezed vacuum state of Fig. 3.19. Solid points refer to experimental data, lines to theory.
The slight asymmetries are due to a variation of the squeezing angle �.
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phase distribution [179], de�ned by

PPB(�) =
1

2�

sX
n;m=0

ei(m�n)��nm (3.23)

on the (s + 1)-dimensional subspace spanned by fjnign=0;::;s is a convenient choice to
analyze the measured states, since quantum state reconstruction techniques allow only
the determination of a �nite number of density matrix elements �nm. For a direct recon-
struction of the quantum mechanical phase distribution by a special integral transform,
see section 3.5.2.

As the photon number distribution is the appropriate representation to verify intensity
squeezing for amplitude-squeezed light, the phase distribution is intended to accomplish
the same for the phase-squeezed states. Fig. 3.23 shows the phase distributions for the
states of Fig. 3.18, demonstrating the phase squeezing and antisqueezing of these states
in comparison with a coherent state of the same amplitude. The observed phase squee-
zing can be considered to be the quantum mechanical counterpart to the classical line
narrowing due to parametric ampli�cation mentioned in Sec. 2.4.

As the coherent excitation e0 of the amplitude-squeezed state is reduced, a bifurcation
of the phase distribution occurs (Fig. 3.24a,b). Finally the squeezed vacuum with e0 = 0
displays a double-peaked phase distribution (Fig. 3.24c), due to the large ratio of the anti-
squeezed to the squeezed variance. This behavior was �rst pointed out by Schleich et al.
[217] (see also [255, 165]). Figuratively one can think of this as follows: The closer a state
of the light �eld is situated to the origin of the phase space, the more distinct features of
it can be resolved by the phase operator.
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3.4.7 The Special Number-Phase Wigner function

Another interesting complete state representation besides the Wigner function and the
density matrix is given by the newly found special Number-Phase Wigner function by J.
Vaccaro [256]:

SNP(n; �) � 1

2�

� nX
p=�n

ei2p� jn+ pihn � pj+
n�1X
p=�n

ei(2p+1)� jn+ pihn � p � 1j
�
: (3.24)

Instead of amplitude- and phase-quadrature, the state is represented in a space de�ned
by the Pegg-Barnett phase and the energy eigenvalues (photon numbers). SNP is easily
gained from the data via the reconstructed density matrix elements. For the squeezed
vacuum state the photon number oscillations and the splitting of its phase distribution
can be clearly seen, thus the nonclassical character of the state becomes more apparent.

Figure 3.25: Experimental special number phase Wigner function for a squeezed vacuum
state. Each circle of the polar plot corresponds to a photon number n. The plot was
generated using the data of the reconstructed density matrix of a 5.5 dB squeezed vacuum
state. Distinct features are the photon number oscillations and the splitting of its phase
distribution.
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3.5 Other reconstruction methods
applied to the measured squeezed states

3.5.1 The inverse problem approach by Sze Tan

Consideration of �nite detection e�ciency

Sze Tan adopted a di�erent approach to homodyne tomography. Not an analytic inversion
formula is employed but rather with the help of the Bayesian statistical formalism in the
space of all possible density matrices the one most likely to belong to the measured data
is found. This makes the method more powerful in so far, as it allows for taking into
account �nite detection e�ciency, thus reconstructing the density matrix of the state of
the light �eld before it has been disturbed by propagation and detection losses. Similar
methods were already known in classical tomography, (see for example [100]). For related
proposals of quantum state estimation see [172, 96, 9].

The best introduction is found in Tan's paper itself [241]. For the case of noiseless
data Tan's method allows an easy and elegant derivation of the pattern functions de�ned
in section 2.3.1. First we see from Eq. 2.41 that there exists a linear relation between the
measured marginals and the density matrix. For reasons of simplicity, I consider only the
diagonal elements of the density matrix pn = �nn and the angle-averaged marginals �P (x),
the extension to the general case is straightforward. Given the state and its distribution
p = fpng we have

�P (x) = Ap ; (3.25)

with A = (ajn) = jhxjjnij2, where hxj jni are the energy eigenstates of the harmonic
oscillator in the position basis. In the actual experiment we do not know the state, so we
want to �nd a photon number distribution p that minimizes

�2 = jj �P (x)�Apjj: (3.26)

Setting @�2=@pn = 0 we get (AtA)p = At �P (x), or

p = (AtA)�1At �P (x) (3.27)

which is called Moore-Penrose solution. Plotting the x-dependent rows of the linear
transform acting on the marginal vector �P (x) gives exactly the previously analytically
found pattern functions fnn(x). This formalism is easily modi�ed to include detecion
e�ciency, replacing A by

A = (ajn) =
N�n�1X
r=0

n+ r

r

!
�n (1� �)r jhxjjn+ rij2: (3.28)

For a more realistic treatment, Tan assumes a Gaussian noise on the data, described by
a matrix W whose diagonal elements are given by the noise variances for each xj. The
maximum likelihood solution becomes then

p = (AtWA)�1AtW �P (x) (3.29)
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Figure 3.26: (a) Experimental phase-averaged homodyne amplitude histogram of the
squeezed vacuum state of Fig. 3.10. (b) Maximum-likelihood reconstruction of the pho-
ton number distribution with no compensation for detection e�ciency, (c) Maximum-
likelihood reconstruction of the photon number distribution with compensation for detec-
tion e�ciency.

Fig. 3.26 shows the averaged marginals with the estimated errors, a �rst reconstruction
assuming a detection e�ciency � = 1 (giving the previous result of Fig. 3.16) and a second
reconstruction assuming a detection e�ciency � = 0:85. As can be seen, for the latter
only the �rst six photon numbers yield plausible results. Exactly the same result is found
by employing the analytically derived pattern functions with �nite detection e�ciency of
D'Ariano et al. or by applying the inverse Bernoulli transform to the originally derived
photon number distribution of Fig. 3.16. Obviously, reconstructions that take into account
�nite detection e�ciencies need more sophisticated methods.

This is done by including prior information such as the non-negativity of the photon
number probabilities. Thus in the space of all possible density matrices a certain subset
is given the priority to be more likely to be measured before any data were recorded. Tan
chooses a Tikhonov regularization, introducing as a prior probability function

Pr(p) / exp(�1

2
�2jjp� p1jj2); (3.30)

where p1 = 0 is called the default reconstruction which is preferred in absence of any
data, and � the regularization parameter used to adjust the strength of the preference.
Again the minimization problem is posed, and by carefully choosing the regularization
parameter, realistic estimates of the quantum state can be gained.
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Figure 3.27: Reconstructions of the photon number distribution of the squeezed-vacuum
state using the non-negative least-squares algorithm with Tikhonov regularization (a) �
= 0.02, (b) � = 0.11. The error bars are calculated from 100 simulated data sets.

Figure 3.28: Reconstructions of the photon number distribution of the amplitude-
squeezed state of Fig. 3.10 with Tikhonov regularization (a) � = 0.02, (b) � = 0.11. Shaded
region: experimental values, dashed line: theoretical estimate, showing the expected but
not detected Schleich-Wheeler oscillations.
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Fig. 3.27 shows the squeezed vacuum reconstructions for two choices of the regularization
parameter. It can be seen that bigger � tend to smoothen the data. Correcting for
detection e�ciency makes the oscillations become more pronounced but no additional
oscillations for n > 5 can be detected.

The same is true for an evaluation of the data of the amplitude-squeezed state of
section 3.2. For the assumed detection e�ciency of 0.8 Schleich-Wheeler oscillations
should clearly be visible. As can be seen in Fig. 3.28 the photon number distribution
becomes realistic and close to theory for � > 0:05, but no large period oscillations are
detectable.

As conclusion, probabilistic methods are powerful and elegant tools for quantum state
estimation, but applied to experimental data no additional quantum features besides the
ones detected by standard reconstruction methods were revealed so far.

3.5.2 The number-phase uncertainty

Direct reconstruction of the phase distribution

As mentioned earlier, employing di�erent integral kernels in Eq. 3.15 allows to sample not
only the density matrix but arbitrary �eld operators [53]. In collaboration with the group
of Prof. Welsch in Jena we reconstructed the Susskind-Glogower phase distributions of
the states presented in section 3.2 directly from their exponential moments [50] without
detour via the density matrix (Sec. 3.4.6) or the Wigner function ([11, 230]).

The canonical phase distribution is de�ned as

PSG(') =
1

(2�)
h' j �̂ j' i; (3.31)

where the phase states are given as [237, 145]

j' i =
1X
n=0

ein' jn i: (3.32)

The exponential phase moments 	k are de�ned by the Fourier components of the
phase distribution PSG('), i.e., 	k =

R
2� d' e

ik'P ('). Expressing the moments by means
of the density matrix elements we �nd

	k =
1X
n=0

�n+k;n: (3.33)

In Ref. [173] it is shown that 	k can be obtained from the quadrature-component
distributions p(x; #) by the integral

	k =

�Z
0

d#

1Z
�1

dxKk(x; #) p(x; #); (3.34)

where Kk(x; #) is a well-behaved integral kernel suited for direct sampling of 	k from the
homodyne output for any normalizable quantum state.
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Knowing 	k, the phase distribution P (') can be obtained according to P (') = (2�)�1P1
k=�1 e�ik'	k. However, the �rst moment already contains essential information about

the phase properties. It can be used to introduce a mean phase �'= arg	1 and a phase
uncertainty �'=arccos j	1j , which implies a number{phase uncertainty relation [93, 171]

�n tan�' � 1

2
: (3.35)

Note that for the number-uncertainty �n= (hn̂2i � hn̂i2)1=2 the quantities hn̂i and hn̂2i
can also be obtained by direct sampling according to a relation of the form (3.34), with
the integral kernel being given in [53]. Hence, homodyne detection can be regarded as the
most direct way that has been known so far for experimental veri�cation of the number-
phase uncertainty relation.

The following table shows the results of direct phase distribution reconstructions for
some of the measured states.

state A B C D E F G H

�' 0.02 1.59 3.13 3.13 -3.13 1.56 2.62 0.78

�' 0.17 0.14 0.30 0.54 0.17 0.14 1.56 0.31

�n 8.62 25.94 9.19 14.72 8.95 38.45 6.92 26.46

�n 3.03 6.20 2.30 7.21 5.38 25.05 10.02 14.85

�n tan�' 0.52 0.87 0.71 4.32 0.92 3.53 � 4.75

Table 3.1: Measured values of �', �', �n= hn̂i, and �n, and the resulting values of the
number{phase uncertainty product �n tan�' for various quantum states [(A,B) cohe-
rent states; (C,D) amplitude-squeezed states; (E,F), phase-squeezed states; (G) squeezed
vacuum; (H) state squeezed in the 48�-quadrature].

The last row of the table shows the resulting values of the number{phase uncertainty
product �n tan�', which are in full agreement with the predicted inequality. The co-
herent states (A,B) and phase-squeezed states (E,F) are seen to exhibit relatively small
phase uncertainties. The smallest value of the uncertainty product is observed for the
coherent state (A). It is close to the limit of 1/2. Relatively large phase uncertainties
are observed for the amplitude-squeezed states (C,D) and the 48�-quadrature-squeezed
state (H). As expected, the near-maximum phase uncertainty �'��=2 is found for the
squeezed vacuum (G), therefore its large uncertainty product �n tan�' is not listed.
For the evaluation of the complete phase distribution note that the Fourier transform of
the exponential moments may lead to arti�cial oscillations, due to the �nite number of
accurately determined moments.

3.5.3 Probing of quantum phase space by photon counting

Banaszek and Wodkiewicz proposed a method of measuring the Wigner function via
photon counting [7]. The idea is the following: The value for the Wigner function at
the origin is given by the alternating sum of the states' photon number distribution:
W (0; 0) = 2

�

P1
n=0(�1)npn. By displacing the signal state to be measured in phase space

via overlapping it with a coherent state within the range where the signal state shows
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its distinct features, all values W (x; y) are accessible by determination of the photon
statistics of these overlap states.

In a restricted sense this method is applicable to our data: The state to measure
is the squeezed vacuum, the displacing occurs when we inject a coherent state into our
resonator, thus overlapping it without change of the quantum statistics with the squeezed
vacuum state. These bright squeezed states are measured via quantum state reconstruc-
tion, thus the photon number distributions are accurately determined. Applying the
Banaszek/Wodkiewicz-algorithm results in one point of the phase space distribution of
the squeezed vacuum state for each measured bright squeezed state. To be able to apply
the method, states with reasonably low mean photon numbers, and accurate distributions,
had to be chosen and it had to be assured that the degree of squeezing for all states was
precisely the same. Considering these restrictions only the sub-Poissonian amplitude-
squeezed, the corresponding phase-squeezed state and the squeezed vacuum itself were
appropriate. The amplitude-squeezed state shifted the Wigner function far away from
the origin, so the result was 0 within the error bound. For the squeezed vacuum (1) and
the phase-squeezed state (2) I got as values for the Photon Count Generating Function
(PCGF), a function proportional to the Wigner function, (for its exact de�nition see [8]):

Theory PCGF(x,y) reconst. PCGF(x,y) point (x,y)

0.17 0.19 ( 0, 0)

0.0016 0.0020 (4.1, 0)

Thus two points of the squeezed vacuumWigner function were determined. Obviously,
this reconstruction technique is not the method of choice in our case, but the measurement
demonstrates that in principle it can be applied to optical experiments. (Note that a
similar method was employed in the trapped ion experiment in Boulder [132]).

3.6 The OPO at and above threshold

The (incomplete) measurements presented in this chapter were among my �rst motives
to improve the quantum state reconstruction techniques, since here a �eld in quantum
optics is entered, which is di�cult to access for both theoreticians and experimentalists
alike. Thus complete experimental quantum state descriptions might be of high value to
improve our understanding of the dynamics of the OPO.

The behavior of the degenerate OPO at threshold is roughly sketched as follows: In
a classical description the phase with which the OPO starts oscillating is determined by
the pump wave 2! only up to a phaseshift of �. Thus directly at threshold the OPO's
subharmonic wave has to decide with which of the two possible phases it will start to
oscillate. Fig. 3.29 shows that this behavior can indeed be observed in the laboratory.

The quantum mechanical description of the behavior leads to similar results. Star-
ting with the elliptical Wigner function of the OPO below threshold, with rising pump
power the state is squeezed further, until a double-peaked phase space distribution arises,
a superposition of two states with nonvanishing mean �eld amplitude and a phase sepa-
ration of �. The higher the pump power, the further apart both distributions are. This



3.6. The OPO at and above threshold 55

-200 -100 0 100 200
Time [ms]

A
m

pl
itu

de
 [

a.
u.

]

Figure 3.29: Interference between the mean electric �eld amplitude of the degenerate
OPO at threshold and a reference laser wave. Phase jumps of � are observable right after
the start of the oscillation. Due to a change in temperature the amplitude of the OPO
output rises continuously. For high amplitudes the phase remains constant. The rapid
oscillation in the middle of the plot is due to the 
yback of the piezo scanning the light
wave's relative phase.

state evolution has been treated in numerous theoretical papers, not all being in perfect
agreement with each other (see for example [274, 116, 124, 257, 260]). Fig. 3.30 depicts
the mean �eld amplitude (= maximum of the phase space distribution) as a function of
the pump �eld strength (notation of Sec. 2.4).

For an ideal lossless OPO interference fringes between the two phase-separated dis-
tributions would appear, but, as pointed out by Timo Felbinger, already the loss of one
photon causes this interference pattern to vanish [66]. What remains is a classical super-
position of two (approximately) coherent states (for the process of decoherence see also
[291, 33, 73]).

Is at least such a classical superposition experimentally observable? Fig. 3.31 shows
some of the measured results. To be able to detect nonvanishing mean �eld amplitudes
at the measurement frequency, the OPO-crystal itself was electrooptically modulated
while the pump power was slowly varied from below to above threshold. The condition
for degenerate operation was ful�lled by carefully tuning the temperature. The point
of degeneracy was located by searching for interference between the signal wave and the
reference wave (local oscillator) as depicted in Fig. 3.29. Lowering the temperature further
led to a sudden extinction of the parametric oscillation. For measurements of the states
above threshold, a 10 000-times attenuating optical �lter was employed to ensure that
the homodyning conditions are ful�lled. This of course made it impossible to detect
nonclassical noise characteristics above threshold. That plots of this kind were recordable
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Figure 3.30: Theoretical plot of the mean electric �eld amplitude of the OPO below
and above threshold �th in dependence of the pump wave's amplitude �. At threshold the
mean �eld solution of the generated subharmonic splits into two stable solutions with a
phase di�erence �, corresponding to the splitting of the phase space distribution into a
double-peaked structure.

at all, considering the extremely unstable behavior of a degenerate OPO at threshold, is
due to the OPO's monolithic design, allowing frequency stable operation without locking.

The squeezed vacuum of Fig. 3.31 although only moderately squeezed (4 dB = 0.4
linear scale) is very strongly anti-squeezed (23 dB = 200). It can be seen, that the noise
distributions of the transition state depicted in the the middle, have symmetric maxima
away from 0. Taking the inverse Radon transform of the sampled distributions of this
trace does indeed lead to a double-peaked structure, very similar to the one theoretically
expected. It is, however, not clear whether such a 2-dimensional distribution does in fact
correspond to a Wigner function of the light �eld, since there are several aspects of these
measurements that are not yet understood:
(a) a frequently occurring overlay of the squeezed vacuum noise with a 2! sine wave,
(b) the splitting into the double-peaked structure occurred sometimes also at other qua-
dratures than the anti-squeezed one, leading, when applying the inverse Radon transform
(which may not be sensible to do) to somewhat distorted phase-space distributions,
(c) the main obstacle: the alternation between the two phases should occur via quantum
mechanical tunneling statistically distributed. For the recorded traces phase jumps occu-
red in regular sequences with a frequency of 99 kHz (727 kHz for a di�erent recording).
This is the very same behavior which occurs for measurements of coherent states, when
modulation frequency and detection frequency (in the MHz regime) are not phase locked
to each other. In this setup this was de�nitely the case. Maybe it is possible, that at
threshold the OPO-oscillation can set in at o�set frequencies 6= 0 within the cavity line-
width. Note also that noise measurements of this kind may be restricted by our two-mode
detection method due to considerations outlined in section 3.8.
The last trace in Fig. 3.31 is again well understood. It shows the OPO above thres-

hold, running stably for minutes in the degenerate mode, making it easy to reconstruct
its coherent state output in the mW regime (damped by the optical �lter as mentioned
above).
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Figure 3.31: Homodyne noise traces i
(t) of the quantum states generated by the OPO
below, at, and above threshold. The strongly (anti-) squeezed vacuum changes into a
coherent state via the transition stage in the middle. The �-periodicity of the quantum
noise below threshold changes to a 2�-periodicity of the signal wave.

As a conclusion, more investigations regarding this system are necessary for a thorough
understanding of the unstable regime of the OPO at its oscillation threshold. To do this,
parametric devices with much lower threshold powers are needed. With a reduced mean
amplitude it would be possible to detect the coherently excited OPO output wave without
damping of the �eld amplitude. Pump power resonant OPOs with threshold powers below
1 mW have been demonstrated [107]. It should be a rewarding project to continue the
investigations presented here with monolithic or semi-monolithic devices of this kind.
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3.7 Classical superpositions of coherent states
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Figure 3.32: Noise traces i
 of incoherent superpositions of coherent states as a function
of time. From the top: Partially phase-di�used state, completely phase-di�used state,
amplitude-di�used state (a2 = 1:0; b2 = 5:4), thermal state (a2 = b2 = 14:8).

As a demonstration of the applicability of quantum state reconstruction methods to
more general states of the light �eld and to investigate the in
uence of noise on the
measurement system, we studied coherent states with controlled addition of classical
noise. Similar experiments have been described in [193]. Since the noise was arti�cially
introduced into the experiment, these measurements may be regarded as being situated
somehow between real experiment and simulation. Nevertheless they provide some insight
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into the measurement process. For example added phase noise may deteriorate or even
extinguish the measured degree of quantum noise reduction of a squeezed state detected
by a spectrum analyzer at the output of a homodyne system. Completely phase-di�used
squeezed vacuum or coherent states, or thermal states are undistinguishable from one
another by plain homodyne variance measurements. Their reconstructed photon number
distributions, however, will not only allow to distinguish between these three states, but
also furnish the exact degree of squeezing.

Experimentally in contrast to noise suppression below the vacuum level, the addition
of noise is one of the easiest tasks to be accomplished in the laboratory. With the setup
used to study coherent states, phase noise was added to the signal wave by applying
a random modulation (Gaussian noise of 1 MHz bandwidth and, to achieve stronger
modulation amplitudes, an additional 2 kHz sine wave) to a piezo-mounted mirror in the
signal wave's path before the OPA cavity. Changing the amplitude of the modulation
from zero up to one optical wavelength controls the degree of phase di�usion of the state.
Amplitude noise was added to the signal wave by modulating with Gaussian noise the
amplitude of the r.f. source driving the phase modulator that generated the sidebands
at the measurement frequency 
. Thermal noise is added by either combining these two
noise sources, or directly by letting the beam pass through a rapidly rotating transparent
wheel with a rough surface, which scatters the light randomly.

Other tested setups to generate classically mixed states involved random light di�rac-
tion in air turbulences caused by heating, scattering in suspensions of micrometer-sized
latex particles, or a 40 W thermal light source (the latter gave no result at all due to
the non-su�cient frequential and spatial mode overlap achieved). Note also that by using
square waves instead of random noise for the amplitude modulation, mixtures between
2 (or more) single coherent states can be achieved, resulting in double (or more) pea-
ked structures for the Wigner functions in contrast to the superposition by di�usion of
in�nitely many coherent states studied below.

The measured noise traces of some of the states are shown in Fig.3.32. Since the
amplitude-di�used state's distribution is very similar to the one of a phase-squeezed state
it is not analyzed further.

3.7.1 Phase di�used states

The reconstructed Wigner functions of the phase di�used states generated by random
mirror modulation are depicted in Fig. 3.33. The process of phase di�usion smears out
the Gaussian of the coherent state along a circle in phase space, given by the amplitude
of the state. The completely phase-di�used coherent state has been mentioned in [140].
Its Wigner function can be derived as follows: Starting with a coherent state's Wigner
function W (x; y) = 1=� exp[�((x� e0)2 + y2)], the rotated Wigner function is given by

W�(x; y) = W (x�; y�) =
1

�
exp

h
�(x2 + y2 + e20 + 2(x cos � + y sin �)e0)

i
(3.36)

=
1

�
exp

�
�(x2 + y2 + e20 + 2e0

q
x2 + y2 cos(� + �))

�
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Figure 3.33: From the top: reconstructed Wigner function of a coherent state, a partially
phase-di�used state, and a completely phase-di�used state.

with cos(�) = x=
p
x2 + y2. AveragingW�(x; y) between 0 and 2� and using exp(z cos �) =P1

�1 Im(z) where Im is the modi�ed Bessel function of order m, we obtain for the com-
pletely phase-di�used coherent state

1

2�

Z 2�

0
W�(x; y)d� =

1

�
e�(x

2+y2+e2
0
) I0(2e0

q
x2 + y2) : (3.37)

This expression is in good agreement with the measured distribution of Fig. 3.33.
The coherence properties of the generated states are best visualized by the density

matrix in the Fock representation. Fig. 3.34 shows how the addition of phase noise to
the coherent state leads to an increasing extinction of its o�-diagonal elements, while the
diagonal elements, that is the Poissonian statistics, remain unchanged.
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Figure 3.34: Reconstructed density matrices: (a) coherent state with purity Tr �2 = 1,
(b) partially phase-di�used state with Tr �2 = 0:26, (c) completely phase-di�used state
with Tr �2 = 0:09. Due to drifts of the signals laser power, the average photon number of
the state (b) is slightly smaller than those of the states (a) and (c).
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3.7.2 Thermal states

The last state of the light �eld we investigated was the thermal state. Since thermal
noise is not phase dependent, and has a Gaussian amplitude distribution, the Wigner
function of a thermal state is a rotational symmetric two-dimensional Gaussian:

W (x; y) =
1

�c2
exp

"
�x

2 + y2

c2

#
: (3.38)

Using the expression for the photon statistics of the squeezed vacuum Eq. 2.39 with a =
b = c and noting that P Leg

n (1) = 1, we can readily obtain the photon number distribution
of a thermal state:

p(n) =
2

c2 + 1

 
c2 � 1

c2 + 1

!n

; (3.39)

resulting in an average photon number of �n = (c2 � 1)=2 . Due to the complete phase
di�usion of the state the o�-diagonal elements of its density matrix are zero, therefore �
is given by

�nm =
1

1 + �n

�
�n

1 + �n

�n
�nm ; (3.40)

in agreement with the experimentally reconstructed matrix shown in Fig. 3.35.
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Figure 3.35: Reconstructed density matrix of a thermal state with hni = 6:9 and Tr �2 =
0:079, generated by random scattering via a rapidly rotating transparent wheel with a
rough surface.
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3.8 Some remarks about two-mode detection

This chapter shows some inherent limitations of the present measurement method and
points out possible mistakes when applying the method to general states of the light �eld.

The crucial attribute of a non-degenerate homodyne measurement, i.e. a measurement
with o�set frequency 
 6= 0, is that always two modes of the light �eld are detected
simultaneously. For uncorrelated modes this has certain consequences. Given two modes
at frequencies ! �
 described by their quadrature operators x̂1; ŷ1; x̂2; ŷ2 with marginals
P 1
�1(x1) and P 2

�2(x2). Let us denote their joint two-dimensional quadrature distribution
by P 12

�1 �2(x1; x2) = P 1
�1(x1)P

2
�2(x2). As pointed out in section 3.1.7, we detect the �eld

di�erence of the two modes x = x1�x2 at �1 = �2. In the case of two uncorrelated modes
the observed distribution can be written as

P�(x) =
Z
P 12
� (x1; x1 � x)dx1: (3.41)

If one of the modes is in the vacuum state, we have basically the case of heterodyne
detection, which due to the overall detection e�ciency of less than 0.5 does not yield
results valid to perform a quantum state reconstruction [52]. If we assume that both
modes are in the same state and have the same marginals P 1

� (x1) = P 2
� (x2) (which is the

case for the measurements of the coherent states and the mixed states of section 3.7), we
have to have

P 1
� (x1) = P�(x) =

Z
P 1
� (x1)P

1
� (x1 � x)dx1 (3.42)

to be able to interpret the measured two-mode result correctly for the original single modes
1 and 2. This is a severe restriction, since only Gaussian distributions are invariant under
autoconvolution.

For a coherent state the marginal of one individual mode is given by P 1
� (x1) =

1=� exp(�(x1�e0 cos �)2). Thus the measured two-mode distribution given by the integral
over the joint marginal distribution amounts to P�(x) = 1=(2�) exp(�(x� 2e0 cos �)2=2),
that is a distribution broadened by a factor of two with twice the amplitude. Since the
vacuum noise is scaled by the same factor of two due to the two-mode vacuum detection,
the overall detected state after normalization corresponds exactly to the same state that
would be measured in a one-mode detection scheme.

That the measurement of non-Gaussian distributions generated from coherent states
described in the preceeding section did yield valid reconstructions is due to the fact that
each individual measurement was performed on a coherent state with the state mixing
following at a slower time scale. This means, these mixed states or in general uncorrelated
states with non-Gaussian marginals can only be detected with the present setup, if the
di�usion time between the states (i.e. in our experiment the spectrum of the added
classical noise) is long in comparison with the measurement time (i.e. the integration
time for one measured point of the recorded noise traces). With a sampling speed of 1.25
MHz and a bandwidth for the introduced noise in the kHz regime, this condition was
clearly ful�lled in our experiment.

Completely di�erent is the case of two correlated modes. Here the simultaneous
detection of both modes is essential to actually observe the properties that de�ne the
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state such as squeezing and photon number oscillations [42]. The decay of squeezing due
to detection losses can be regarded as a loss of correlation between the two modes.

It is instructive to look at the joint Wigner distribution of the two-mode squeezed
vacuum state. The two-mode squeezing operator

S = exp
h
r(ay1a

y
2 � a1a2)

i
(3.43)

is realized by the process of non-degenerate parametric down-conversion 2! ! !1 + !2,
where due to energy conservation the generated signal and idler waves can be written as
!1;2 = ! � 
. With the transformations

Syx1S = x1 cosh(r) � x2 sinh(r)

Syy1S = y1 cosh(r) + y2 sinh(r) (3.44)

the two-mode vacuum Wigner function W (x1; y1; x2; y2) = 1=�2 exp[�(x21+ y21 + x22+ y22)]
is mapped under the action of the squeezing operator to

W (x1; y1; x2; y2) = (3.45)
1

�2
exp

h
� cosh(2r)(x21 + y21)� sinh(2r)(y1y2 � x1x2)� cosh(2r)(x22 + y22)

i
:

Obviously the quadrature operators of the two modes (x1; y1) at frequency 
 and (x2; y2)
at frequency�
 become cross correlated under the action of the squeezing operator. This
becomes more transparent when using the decoupled coordinates

x = (�1 + ��2)=
p
2 = (x1 + iy1 + x2 � iy2)=2 and

y = (�1 � ��2)=
p
2 = (x1 + iy1 � x2 + iy2)=2: (3.46)

This substitution transforms the two-mode Wigner function into the well-known Wigner
function for the one-mode squeezed vacuum given by Eq. 2.25.

To investigate the distribution of the individual mode at 
 we have to integrate the
two-mode Wigner function over x2 and y2. Noting that in our previous notation for
squeezing a2 = e�2r and b2 = e2r, we arrive at

W (x1; y1) =
2

�(a2+ b2)
exp

"
�2(x21 + y21)

a2 + b2

#
: (3.47)

Thus each individual mode is in a thermal state. Only the correlations between the
modes at 
 and �
 bring about the squeezing properties. Comparing this with Eq. 2.25
of section 2.2 and setting c2 = (a2 + b2)=2 we obtain for the mean photon number from
Eq. 3.39 directly �n = (a2 + b2 � 2)=4. Which shows as expected that for two perfectly
correlated modes the mean photon number of the individual thermal state is the same as
for the two-mode squeezed vacuum state (Eq. 3.17). This also explains the exponential
envelope of the even photon number probabilities for the squeezed vacuum state seen in
Fig. 3.16.

To actually detect two-mode correlations via the two single mode thermal states ex-
plicitly, two-mode quantum state reconstruction schemes have to be applied as proposed
in [193, 192]. For measurements of states of the light �eld, where the correlation of fre-
quential modes is asymmetric or three- or more mode correlations exist, the method of
non-degenerate homodyne detection is hardly usable anymore. In such cases the experi-
ment has to be modi�ed to allow for degenerate measurements at 
 = 0 [228].
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3.9 Broadband reconstruction
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Figure 3.36: Frequency response of the detection system for measurements of broadband
quantum state reconstruction.

The reconstructions presented so far were limited to essentially one particular pair
of modes at frequencies ! � 
. The spectral bandwidth of this mode pair was �
=2�
= 100 kHz. Since an OPA pumped below threshold emits a frequency spectrum, with a
bandwidth determined by the cavity linewidth, the output of the OPA is described more
precisely by a whole spectrum of quantum states. General schemes for multimode recon-
struction become quite complicated already at the two-mode level [174, 192, 193]. So far
only one experiment demonstrating photon-number correlations in the time domain by
measuring the photon statistics via dual-pulse phase-averaged homodyne detection has
been carried out [154]. In the measurements presented in this section the whole "spec-
trum" of density matrices and Wigner functions is obtained and the �rst order correlation
function in the time domain is evaluated. Considering the whole information contained in
the multimode space spanned by the emitted quantum states, we have measured exactly
along the diagonal of this space.

In order to obtain simultaneously information about the quantum states of all modes
emitted by the OPA, the homodyne detector current i� was recorded with a bandwidth
�
 covering the range from 2 to 30 MHz, exceeding the OPA's 17.5 MHz cavity line-
width. The data's frequency spectrum for a measurement of the vacuum state is shown in
Fig. 3.36. This �gure has to be compared with Fig. 3.7 in the previous single-mode mea-
surements. The steep drop o� at low frequencies is due to a low pass at 1 MHz employed
only in these broad band measurements. The main (nonlinear) frequency dependence at
higher frequencies is due to impedance mismatch of the A/D-converter. The photodetec-
tors (including their ampli�cation circuits) show only a very small power decrease in the
shown frequency range, their responsivity (including ampli�cation circuit) was measured
to go beyond 80 MHz (140 MHz speci�ed for ETX500T). With a local oscillator power
of 2 mW the shot noise level is 14 dB above the electronic noise level of the detectors at
lower frequencies and 5 dB for frequencies between 24 and 30 MHz. To avoid disturbances
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Figure 3.37: Three examples of the simultaneously recorded squeezed vacuum states
emitted by the OPA: Upper row: contours of the Wigner functions, lower row: corre-
sponding reconstructed photon number distributions (dots) with theoretical expectations
(histograms). For increasing o�set frequency 
 from the OPA cavity center frequency
the states aproach the vacuum state and the characteristics of squeezing such as photon
number oscillations and ellipticity of the Wigner function vanish.

in the spectrum by the frequency doubler, the locking frequency for the Pound-Drever
stabilization was shifted to 75 MHz.

Although the strong frequency dependence of the data recording does account for a
di�erent quality of state reconstructions at di�erent frequencies, it does not present a
major obstacle for the measurement, since the noise traces can be normalized in Fourier
space or normalized for each mode seperately by multimode vacuum state detection.

As in the single-mode measurements, the homodyne data of the squeezed vacuum state
are taken while the local oscillator phase is swept by 2�, resulting in noise traces similar
to the ones presented in section 3.2, the measurement time being approximately 8 ms.
The recorded noise trace is split into 16 separate traces, each containing the information
of a mode pair of small bandwidth, centered at a sideband frequency �
. This is done by
dividing the Fourier transform of the recorded trace into 16 equal intervals, and taking the
inverse transform of each interval separately. The same is done for a measured i�-trace of
a vacuum state, in order to normalize each of the 16 traces. Due to high electronic noise
at low frequencies the �rst of the 16 traces, containing the spectrum between 0 and 1.875
MHz, is discarded. The quantum states of the remaining 15 modes can be reconstructed
the same way as before, employing the pattern fuctions of the harmonic oscillator and
the inverse Radon transform. Thus a whole \spectrum" of Wigner functions and density
matrices is obtained from a single temporal record.
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Figure 3.38: Spectrum of squeezing and anti-squeezing: Spectrum analyzer traces (upper
and lower grey lines) in comparison with a theoretical �t (smooth black lines). Each
of the 15 pairs of black squares corresponds to one reconstructed quantum state at a
speci�c frequency 
 and represents the maximum/minimum width of the sampled marginal
distributions. The reduction in squeezing at frequencies below 4.5 MHz is due to classical
laser noise at low frequencies.

3.9.1 Analysis in the frequency domain

The main di�erence between the squeezed vacuum states reconstructed at di�erent

 is the amount of noise reduction (squeezing) and enhancement (antisqueezing). The
spectra of quantum noise power of the squeezed quadrature 	� and of the antisqueezed
quadrature 	+ of an OPA on resonance are given by Eq. 2.53.

In contrast to the single-mode measurements the mode cleaning cavity was not em-
ployed, since due to lack of space for another experiment the setup had already been
partially dismantled. Thus classical noise of the pump wave was not negligible and the
modematching between local oscillator and the OPA output signal was � 95%. Further-
more the e�ciency of the photo detectors had degraded slightly, thus the overall detection
e�ciency including escape e�ciency � � � was �tted to be 0.7. The pump power was ap-
proximately half the threshold power and the cavity linewidth (HWHM) was �=2� = 17:5
MHz.

Fig. 3.38 shows the spectra of the maximally squeezed and anti-squeezed quadratu-
res measured directly with a spectrum analyzer in comparison with the ones obtained
via multimode reconstruction. Three of the reconstructed states are plotted in Fig. 3.37.
They display strongly elliptical Wigner functions and oscillations in the photon num-
ber, characteristics that vanish when the state aproaches a vacuum state at frequencies
su�ciently away from the OPA cavity center frequency.
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Figure 3.39: Electric �eld variances in dependence of the local oscillator phase and
photon statistics of the sum of all OPA modes between 2 and 30 MHz. The average
photon number hni = 0.8 gives the average photon 
ux per Hz bandwidth. This implies
a total photon 
ux of 2:2 � 108 photons/s � 45 pW within the detection bandwidth of 28
MHz.

A direct measure of the total noise of the squeezed and anti-squeezed quadraturesR
	�(
; P )d
 of the overall OPA output within the bandwidth 1.9-30 MHz is obtained by

analyzing the full quantum noise instead of its particular Fourier components (for this, the
non-uniform spectral response of the A/D-board has to be eliminated via normalization in
Fourier space). The inset of Fig. 3.39 shows the total electric �eld variances as a function
of the local oscillator phase. Well-known �gures of this type usually depicted only the
E-�eld variances of a single mode of the light �eld [227, 276, 232, 184, 112, 31]. Here
we obtain for the overall OPA output a total squeezing of -2.9 dB (= 0.47 linear scale)
and 6.7 dB (= 4.7) for the total antisqueezing. The corresponding photon statistics is
shown as well. This multimode light �eld would be detected if photon counters were
employed instead of homodyne detection. Note that no photon number oscillations are
observable in the total OPA output. This may seem surprising, since almost all the photon
number distributions of the individual modes show oscillations and all the reconstruction
transformations are linear. However, according to basic laws of probability theory the
overall sampled distribution of the quantum noise is not given by the average but by the
convolution of the distributions of the individual modes. Therefore the photon statistics
of the total OPA output is not given by averaging the single mode statistics (for simple
instructive examples consider for instance the two-mode mixing of a squeezed vacuum
and a vacuum state or of two squeezed vacuum states with relative phase di�erence of
�=2). What is averaged though in our case of uncorrelated Gaussian noise distributions
is, as mentioned above, the variance at each particular phase angle.
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3.9.2 Analysis in the time domain

A further perspective is gained by the analysis of our data in the time domain. At a �xed
phase � of the local oscillator, the recorded time trace can be regarded as the quantum
trajectory of the quadrature x�(t) = 2�1=2(ay(t) ei� + a(t) e�i�), denoting by a(t) the
output �eld operator. Thus the recorded data contain all information needed to extract
the �rst order correlation function of the �eld operators g(1) since the latter can be easily
expressed in terms of the correlation function of the quadrature operators

g(1)(� ) � hay(� )a(0)i
hay(0)a(0)i

= h(x(� )x(0) + y(� )y(0)i=2 (3.48)

=
hx�(� )x�(0)i�
hx�(0)x�(0)i� :

Here <>� means averaging over all phase angles. This function is easily calculated using
the input-output formalism for optical cavities of section 2.4. Since the frequency de-
pendence of a and ay is known in Fourier space, the application of the inverse Fourier
transform directly gives the autocorrelation function by the Wiener-Khintchine theorem.
Alternatively g1(� ) is found by calculating the power spectrum of the electromagnetic
�eld. For the squeezed vacuum, having no coherent excitation, this is given by the avera-
ge of the variances of the quadrature component distributions P�(x;
) over one oscillation
period.

jE(
)j2 =
1

2�

Z 2�

0

Z 1

�1
x2P�(x;
)dxd�

=
1

2�

Z 2�

0
w�(
)d�

=
1

2
(a(
)2 + b(
)2) (3.49)

where w�(
) =
q
a(
)2 cos2 � + b(
)2 sin2 � and a(
)2 = 	�(
; P ) and b(
)2 = 	+(
; P )

are the spectra of squeezing and anti-squeezing de�ned by equation 2.53. The �rst order
correlation function follows straight by taking the inverse Fourier transform and norma-
lizing to g1(0) = 1. Both ways we arrive at

g(1)(� ) =
1� d2

2d

�
1

1 � d
e�(1�d)�� � 1

1 + d
e�(1+d)��

�
: (3.50)

Fig. 3.40 shows this quasi-exponential decay similar to the one of a thermal state [140].
The experimental data are in good agreement with theory.

Since the Fokker{Planck equation of the system is linear in the 
uctuation terms, its
stationary solution is Gaussian, thus all the normalized higher{order, multi{time corre-
lation functions g(n)(ay(t1); :::; a(tn)) can be expressed as sums of products of the second
moments of the distribution. Therefore, knowledge of the normalized two{time correlati-
ons g(1)(� ) and g(2)(� ) is enough to reconstruct the whole time statistics.
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Figure 3.40: First order time correlation function g(1)(�) of the squeezed vacuum state
(dots) in comparison with theory (line).

Applying the Gaussian decomposition to the intensity{intensity correlation g(2) we
get

g(2)(� ) � hay(0)ay(� )a(� )a(0)i
(hay(0)a(0)i)2

=
hay(0)ay(� )iha(� )a(0)i+ hay(0)a(� )ihay(� )a(0)i+ hay(0)a(0)ihay(� )a(� )i

(hay(0)a(0)i)2

=
(1� d2)2

4d2

"
e�2(1�d)��

(1� d)2
+
e�2(1+d)��

(1 + d)2
+
e�2��

1 � d2

#
+ g2(1)(� ) + 1 : (3.51)

The normalized intensity{intensity correlation at equal times is then

g(2)(0) =
3 + d4

4d2
+ 2 : (3.52)

The vacuum limit d! 0 of the normalized intensity{intensity correlation is known to
be ill{de�ned and strongly dependent on the initial state; for instance, it is 1 if one starts
from a single mode in a coherent state. It instead diverges as the inverse of the second
power of the squeezing parameter if one starts from a pure single mode squeezed state
[266]. One can immediately see that this peculiar behavior is preserved also in the case
of the multimode squeezed output from the parametric ampli�er.

For the evaluation of higher order correlation functions g(n); (n > 1) from the measu-
red data we need to substitute the time dependent �eld operators â(t) and ây(t) by the
quadrature operators X(t), Y (t). Due to the time dependent commutators this substi-
tution is quite complicated. In particular it involves terms like X(t)Y (t), i.e. products
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of conjugated quadrature operators at equal times. These are not measurable with the
present setup where di�erent quadratures are detected by changes in the phase of the
light �eld. A possible solution would be to employ an eight port homodyning scheme,
such as the one used for Q-function determination [263]. This is possible, since detection
e�ciency does not play the same crucial role in time correlation measurements which it
does for quantum state reconstructions. In fact ideally g(n) is independent of �. Such a
scheme would also render possible single-mode time correlation measurements instead of
the here presented two-mode measurements.

The quantities that are in principle measurable though with the present setup are all
higher order time correlations of the �eld quadratures hx�(�1)x�(�2):::x�(�n)i. Except for
one special case [150] their signi�cance does not appear to have been studied. For the
measured data the evaluation of these correlations could not be done reliably, because
of di�culties with a proper normalization at � = 0 and since the minimum recordable
timestep of 1.7 ns was too large in comparison to the expected rapid exponential decay
times e�n(1�d)�� .
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3.10 Overview

Figure 3.41: Wigner function contours of the reconstructed states of the preceding chap-
ters. All basic types of squeezed states and classical di�used states have been generated and
in detail analyzed. Top row from left to right: vacuum state, coherent state, squeezed va-
cuum state; second row from left to right: phase-squeezed state, 48�-quadrature-squeezed
state, amplitude-squeezed state; third row from left to right: partially phase-di�used co-
herent state, completely phase-di�used coherent state, amplitude-di�used coherent state;
bottom row: thermal state. Since there is still some space left, the gentle reader may
attempt to his own delight the drawing of the contour plot of a partially phase-di�used
squeezed vacuum state.
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3.11 Outlook part I

Besides the mentioned un�nished projects: Schleich-Wheeler oscillations for bright squee-
zed states (Sec. 3.4 and 3.5.1), investigation of the OPO above threshold (Sec. 3.6), and
the measurement of higher order correlation functions (Sec. 3.9), possible continuations
of the here presented measurements are the generation and quantum state analysis of
new states of the light �eld with non-Gaussian statistics using higher order nonlinear pro-
cesses [65] or the investigation of the one-photon (Fock) state by coincidence homodyne
measurements [284] (for latest developments see [83]).

Quantum optical investigations of higher order nonlinear processes started already in
the eighties, labeled by the term \generalized squeezing" [68, 27]. The case of a third order
nonlinear susceptibility �(3), resulting in three-photon downconversion 3! ! ! + ! + !,
which up to now has not been demonstrated experimentally, was considered theoretically
in detail by Timo Felbinger in our group [65]. A degenerate resonant three-photon down-
conversion oscillator (TDO) exhibits a behavior similar to the one of an OPO [6, 65]: The
TDO, pumped by the 3!-wave, has a certain threshold Pth for the pump �eld strength
P , above which it starts oscillating at !. The phase of the !-wave is de�ned up to a
phase factor of 2�=3. Thus, including the zero solution which, in contrast to the 2-photon
OPO remains a stable solution for the subharmonic wave above threshold, four stable
solutions for the !-wave exist. Accordingly, the phase space distribution of the light �eld
at frequency ! exhibits a threefold symmetry below and above threshold. Fig. 3.42 shows
the noise trace of such a subthreshold pumped TDO. It was generated by Timo Felbinger,
using the method of quantum trajectory simulations. Applying to these data the inverse
Radon transform yields the phase space distribution depicted in Fig. 3.43. In a single pass
con�guration, as opposed to the cavity-resonant scheme, oscillations between the three
arms of the Wigner function occur due to phase space interference [8] similar to the one
described in Sec. 3.4.5. As outlined in Sec. 3.2.2, the measurement of the third-order sta-
tistical moment of the light �eld's quadrature distributions may provide the �rst evidence
indicating the third order nonlinear interaction at the quantum level. Care has to be ta-
ken when considering the technique of non-degenerate homodyne detection as applied in
this thesis, since the relevant output �eld of the TDO at frequencies 6= 0 is a three-mode
�eld.

First practical considerations: Assuming a doubly resonant cavity and degenerate
operation with an interaction hamiltonian

Ĥ(3) = ��h

i
�(3)

�
ây3â3 � â3ây3

�
; (3.53)

the threshold for the TDO is given by

Pth =
8

27

�h!3

3

2

1

2

3

�(3)
; (3.54)

where 
3 = T3=2� and 
 = T=2� are the scaled losses of the harmonic and subharmonic
wave in a resonator of length L with index of refraction n = �2, round trip time � = nL=c,
and linear losses T3 and T respectively, !3 = 3! is the frequency of the pump wave, and

�(3) = �3
p
3�h!2

16�0�2
�(3)

1

V
(3.55)
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Figure 3.42: Noise trace of the output of a 3-photon OPO generated by quantum tra-
jectory simulations.

Figure 3.43: Corresponding Wigner function. Because of its threefold symmetry, the
state is also called star state.
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is the coupling constant assuming a mode volume V . To get �rst estimates we can
approximate

Pth � 10�16W

p
T 3T3
�(3)

m2

V 2
(3.56)

As mentioned above, so far no experiments demonstrating 3-photon down conversion
have been done. Values for �(3) have been obtained via third harmonic generation. The
following table gives an overview over the main experiments performed so far (another
class of materials, doped �bers, is still under investigation):

Material �(3) [m2/V2] Wavelength [nm] Reference

BBO, crystal 4:2 � 10�22 1064 [186, 248] (see also [277])

LiIO3, crystal 9:1 � 10�21 1064 [170]

rutile, crystal 5:6 � 10�20 1900 [84]

org. crystals � 5 � 10�18 [125, 181]

Rb:Xe, gas 3:9 � 10�27 1064 [282, 15, 187]

doped glasses 5:6 � 10�19 2100 [121, 243]

As can be seen, even without adressing the problem of phase matching [87], threshold
powers in the order of 100 W can be expected. In addition, related to the di�erent
classical behavior at threshold it was found that in contrast to the 2-photon OPO for
the light �eld emitted from the TDO-cavity a signi�cant deviation from the vacuum
state Wigner function does not occur for pump powers near threshold but much higher
[65]. In conclusion further developments of �(3)-materials are necessary before successful
measurements of the light �eld of a star state can be performed.

A second proposal, suggested to us by Ulf Leonhardt, is the investigation of the one-
photon state by coincidence honodyne measurements [284]: Of the output of a two-photon
source (a non-degenerate parametric downconverter) one photon serves as the trigger
photon (state preparator) for the measurement of the second photon by a homodyne
detector. By statistical analysis of the homodyne detector output, similar to the one
presented in this thesis, the quantum state of the single photon can be mapped out,
providing an unprecedent detailed experimental description of the elementary excitation
of the electromagnetic �eld.
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4 Introduction to part II

At the quantum level, a measurement disturbs the system being measured. The back
action due to the quantum nature of the probe is usually very small and has not yet been
observed for a macroscopic system. The existence of the quantum back action leads to the
appearance of a quantum limit in the accuracy of measurements, the standard quantum
limit (SQL) [25]. For measurements of the position of a harmonic oscillator of mass m and

resonance frequency !m this is �xSQL =
q
�h=m!m. For a laser interferometric position

measurement, the back-action can be understood in a straightforward manner [61, 175].
The probing laser wave carries quantum 
uctuations. For a coherent state of light, the
quantum uncertainties of phase and intensity are equal and proportional to the square
root of the laser power P . The intensity quantum 
uctuations cause radiation pressure
noise which leads to displacement noise whose uncertainty scales with

p
P . At a high

enough laser power this noise will become appreciable. On the other hand, the read-out
uncertainty due to quantum noise scales with 1=

p
P , since the signal is � P , thus it

dominates at low laser powers. An optimum laser power exists that minimizes the sum of
the read-out noise and that due to back action. The measurement accuracy corresponding
to this optimum readout precision is the standard quantum limit (SQL). The SQL is of
fundamental interest, because it limits the sensitivity with which an external force acting
on the macroscopic body may be detected using coherent light [17].

The observation of quantum e�ects with optomechanical sensors requires the develop-
ment of oscillators with low loss and low spring constant, their integration into a sensitive
read-out system, and minimization of the oscillator's thermal noise, which can easily mask
the quantum e�ects. While optomechanical systems have received considerable theoreti-
cal attention [61, 39, 40, 141, 253, 20, 157, 138, 101, 88, 143, 175, 63, 148, 86], only few
experimental studies have been performed after the �rst observation of the DC radiation
pressure in an optical cavity [58].

In this second part of the thesis the setup of a cryogenic optomechanical system based
on a Fabry-Perot cavity with a movable mirror is presented which has the essential features
to allow observation of quantum back action and the standard quantum limit.

After a brief introduction to the theory of optomechanical systems, the experimental
work is presented, starting with a characterization of the employed mechanical oscillator,
in section 6.1, followed by a description of the overall setup in section 6.2{6.4, and the
�rst measurements in section 6.5. A comparison with similar experiments by other groups
is given in section 6.5.1, concluded by a short outlook.
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Figure 5.1: Sketch of the experiment consisting of a laser source and a Fabry-Perot
cavity. Goal is a precision measurement of the movable mirror's position.

5.1 Mechanical harmonic oscillation

The one dimensional mechanical harmonic oscillator without application of external forces
is decribed by the equation of motion

m�x+ � _x+ kx = 0; (5.1)

where m is the oscillator's mass, � is the friction, and k is the spring constant. The
equation is solved by an exponentially decaying harmonic oscillation

x(t) = x0e
�
tei(!mt+�) : (5.2)

Here 
 = �=2m denotes the damping coe�cient, which is the inverse of the decay time
� � = 1=
 and

!m =

s
k

m
� �2

2m2
= !0

s
1 � 1

2Q2
(5.3)

denotes the oscillator's resonance frequency, with !0 =
q
k=m being the resonance fre-

quency of the undamped oscillator and Q = !0 �
�=2 =

p
k m=� being the mechanical

quality factor. The Q-factor is proportional to the oscillator's relative energy dissipation
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per oscillation period. In the following sections I will use the experimentally realistic
approximation !m � !0.

The response of the mechanical oscillator to the excitation by an external harmonic
force F (t) = F0 exp(i!t) is given by the mechanical susceptibility

�(!) =
x(t)

F (t)
=

1

m(!20 � !2 � i!!0=Q)
: (5.4)

Consequently the spectral displacement density S(!) of the response to an external force
F with spectral density SF (!) is given by

S(!) = j�(!)j2SF (!) ; with (5.5)

j�(!)j2 =
1

m2 [(!2 � !20)
2 + !2!20=Q

2)]

(5.6)

=
1

m2

��
!2 � !20(1� 1

2Q2 )
�2

+
!4
0

Q2 (1� 1
4Q2 )

�

The latter expression makes it easier to read o� the response's maximum at !m and the
corresponding resonance width �! � !0=Q (FWHM) for Q� 1.

The overall response of the system to an external force is given by the integralR
S(!)d!. Since the forces considered in this experiment, photon recoil and Brownian

noise, are not explicitly frequency dependent, i.e. stem from white noise sources, the to-
tal displacement in response to these forces is proportional to the integral over the squared
susceptibility. This integral is solved by residue calculus to

1Z
0

�(!)2 d! =
�Q

2m2!30
: (5.7)

5.2 The Fabry-Perot interferometer, FM detection

The position of the mechanical oscillator, which forms one mirror of a Fabry-Perot cavity,
can be monitored by detecting intracavity phaseshifts of the light re
ected from the
resonator. This is done by using a frequency modulation (FM) technique described in
[59, 91]. For an empty cavity with internal losses A, an incoupling mirror with re
ectivity
R1 and a rear mirror with re
ectivity R2, the ratio of the E-�eld of the re
ected wave
versus the one of the incoming wave as a function of the detuning � is given by [226]

C(�) =
Er

Ei
=

q
�=R1 e

i� �pR1

1 �p� ei� ; (5.8)

where � = R1R2A is equal to one minus the overall losses.
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The incoming wave of frequency !L is frequency modulated with a modulation index
� at the frequency 


Ei = E0 exp[ i (!Lt+ � sin
t)] : (5.9)

This expression simpli�es in �rst order approximation to

Ei = E0 [J0(�) + J1(�)(e
i
t � e�i
t)] exp(i!Lt) ; (5.10)

denoting by Jn the nth Bessel function. The re
ected wave consists of three terms

Er = E0 J0(�)C(�) + E0 J1(�)C(�
)� E0 J1(�)C(��
) ; (5.11)

where we used Eq. 5.8 with �
 = � + 
2L=c and ��
 = �� 
2L=c.
The intensity Ir of the back re
ected wave is recorded by a photo detector. Mixing

the detector output with an electrical local oscillator at frequency 
, we obtain in the
high �nesse approximation R1 � R2 � 1

Ir(
) � E2
0J0(�)J1(�)(1�R1)

�F
�

�2 1

1 + (2F sin(�=2)=�)2
cos(�) : (5.12)

Here � denotes the phase between the modulation frequency and the local oscillator and

F =
�
p
�

1� �
� �

1� �
(5.13)

is the cavity �nesse. This error signal provides a sensitive readout for the intracavity
phase, thus it can serve to monitor the oscillator's position. A typical error signal is
shown in Fig. 6.14 in the experimental section. Note that in order to treat the motion of
the movable mirror quasi-stationary, the cavity decay time �L = FL=c� has to be short
in comparison to the oscillator's round trip time 2�=!0. This is achieved by choosing a
short cavity length L.

5.3 Position measurements with a Fabry-Perot in-

terferometer

The sensitivity with which the interferometer can detect changes in the mirror's position,
is limited by the sensitivity in detection and by the intrinsic displacement uncertainty
of the mirror's position. The sensitivity in detection originates from the amplitude and
phase 
uctuations of the laser probe beam, which for a laser without additional classical
noise is given by the shot noise. The mirror's displacement uncertainty has its origin in
its thermal motion and in the displacement noise caused by the irregularity of the photon
arrival time at the mirror (quantum back action).

To calculate explicitly the amount of each contribution we note, that the average
power of a coherent laser beam of frequency � is given by

P =
hn ih�

t
: (5.14)
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From the Poissonian distribution of the photon number follows h�2n i = hn i and there-
fore the spectral density of the shot noise is given by

SSN =
h�2P i
�f

=
hc

�
hP i ; (5.15)

where �f = 1=t. A more detailed calculation for FM measurements [164] results in

�x2SN =
SSN
�

=
�hc

4�PF2�

(J0(�)�)
2 + 2J1(�)2

4(R1 � �)2J20 (�)J
2
1 (�)

; (5.16)

where � is the quantum e�ciency of the photodetector and the parameter � is given by
� = [

p
R1�

p
R2(1�A)]=(1�pR1R2). Expression 5.16 is valid for a measurement time

� longer than the cavity decay time �L and perfect mode-match of the laser wave into the
resonator. For simplicity, we consider in the following the case of a loss-less input coupler
(A = 0), perfect impedance matching (R1 = R2), and high �nesse (R1 ' R2 ' 1), so that

�x2SN =
�hc

8�PF2J20 (�)
�f : (5.17)

with a measurement bandwidth �f = 1=� .
The back-action due to radiation pressure 
uctuations is described by the momentum

uncertainty transferred by the circulating light to the oscillator:

�pBA = 2�hk

s
�PJ20 (�)�

hc

F
�
: (5.18)

Here, 2�hk is the momentum transfer per photon and the other terms arise from the uncer-
tainty of the number of photons hitting the oscillator mirror. Note the linear dependence
on F , which results from the fact that the signal to quantum noise ratio of the intensity of
the light circulating within the cavity must be the same as that outside the cavity. From
this expression the spectral density of the quantum back action is derived to be

SBA(!) = �2(!)4
�hk

c
PJ20 (�)

�F
�

�2
; (5.19)

where �(!) is the mechanical susceptibility de�ned in Eq. 5.4. Integrating over the whole
resonance gives the expected displacement

�x2BA =
1

2�

1Z
0

SBA d! =
Q

!30m
2

�hk

c
PJ20 (�)

�F
�

�2
; (5.20)

where we used Eq. 5.7. The inclusion of classical noise of the laser in these equations
which leads to back action e�ects as well (see next section) can be found in [246].

Finally, the spectral density of the displacement of the mass due to thermal excitation
is given by

STH(!) =
4kBTm!0

Q
�2(!); (5.21)
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Figure 5.2: The three contributions to the total displacement noise �x at the oscilla-
tor's resonance frequency !0 and their sum in dependence of the optical input power. For
lower temperatures the thermal noise decreases considerably. The shift of the back action
contribution to lower laser powers is due to the higher mechanical Q-value at 4.5K. The
parameters used for the two graphs are listed in the text. As in the experiment, the mea-
surement bandwidth is assumed to be large compared to the bandwidth of the oscillator's
resonance. The two black dots correspond to measurements explained in Sec. 6.5.1.
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resulting in an expected displacement

�x2TH =
1

2�

1Z
0

STH d! =
kBT

m!20
: (5.22)

This is the same result as the one, that would be obtained by the equipartition theorem:
The probability to measure the amplitude x of a harmonic oscillator subject to thermal
noise is given by

P (x) ' exp

 
�m!

2
0hxi2

2 kBT

!
: (5.23)

Thus the uncertainty of the oscillator's amplitude is equal to the variance of this Gaussian,
resulting in Eq. 5.22. For the in
uence of the �nite measurement time see Sec. 6.5.1.
The overall displacement noise consists of the sum of these three contributions

�xTOTAL = �xSN +�xBA +�xTH : (5.24)

For a derivation of this equation directly from the quantum Langevin equations of the
complete coupled optomechanical system see [246]. Note that correlations between detec-
tion shot noise and back action noise do not play a role in our scheme, since the relevant
photo detection shot noise is the one at the FM frequency in the RF range, far away from
the kHz range where the back action takes place.

Two plots of this expression, one at T = 300K and one at T = 4:5K are shown in
Fig. 5.2 for the experimental values F = 15 000, !0 = 2� � 2:6 � 104 s�1, m = 10�5 kg,
k = 2�=� = 5:9 � 106m�1, � = 70%, J0(�) = 2=3, and �f = 4Hz. The main di�erence
between the two plots is that the operation at cryogenic temperatures leads to a reduction
of the thermal noise level �xTH and an increase in the mechanical Q-value: Q(T =
300K) = 2 � 105, Q(T = 4:5K) = 2 � 106 (see Sec. 6.1.3).

Both �gures show that the point of the SQL, where shot noise and back action limited
sensitivity meet (the crossing of the two straight lines) is concealed by the oscillator's
thermal noise. For the experimental values from above at cryogenic temperatures we get
a value of �xSQL = 2 � 10�17m at a power of 4 � 10�6W. Note that this value is not a
true quantum mechanical limit, since it is dependent on the measurement bandwidth.
For estimates of the real SQL spectral densities instead of displacement variances have
to be used. However, since experimental spectral measurements were limited so far to
relatively large bandwidths and since the ratio thermal noise/back action is independent
of the bandwidth, the here presented theoretical �gures are more useful for a comparison
with the experiment.

For the plot at 4.5K it can be seen that thermal noise and back-action noise become
equal at laser powers of 3 W. With improvements of the Finesse values by a factor of 10,
this borderline to the back action regime would move to the experimentally accessible 30
mW.

A di�erent approach to investigate the power dependence of the interferometer's sen-
sitivity is, to adjust the measurement time in dependence of the input power, in order to
maximize the sensitivity. With such a scheme the SQL becomes directly apparent when
using measurement times short to the mirror oscillator's decay time [245]. The same is
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Figure 5.3: Sensitivity of the interferometer for o�-resonance detection. The parameters
at T = 4:5K are the same as before, except for the �nesse which was assumed to be
150 000. The SQL can be reached at laser powers in the mW range.

true for the (not yet experimentally accessible) detection at frequencies away from the
oscillator's resonance frequency. Due to the high Q-factor thermal noise is greatly su-
pressed, but of course the responsivity of the oscillator is much smaller as well. For the
experimental parameters at 4.5K given above, using a susceptibility �(0)2 = 1=m2!40, we
get a value of �xSQL = 1 � 10�19m at an input power of 2 W. For the improved Finesse
of F = 150 000 the numerical value of �xSQL remains the same, but the laser power at
which it is reached changes to the moderate value of 10 mW (Fig. 5.3).

5.4 Radiation pressure e�ects

Although all interactions between the movingmirror and the light �eld have the same basic
physical origin, the recoil of the re
ected single photon, it is helpful for an understanding
of physical e�ects and for having a de�ned nomenclature in further descriptions of the
experiment, to distinguish between several e�ects of this opto-mechanical interaction.
These e�ects are not unrelated to or even may include each other.

5.4.1 List of possibly occurring e�ects

a) quantum back action
b) squeezing of the light �eld due to the interaction with the moving mirror.
c) classical back action,
d) optical excitation of the oscillator at resonance,
e) DC radiation pressure e�ects and optical bistability,
f) back action caused by periodic radiation pressure changes due the oscillator's motion,
g) back action caused by periodic changes in the cavity modematching,
h) classical back action due to frequency noise of the laser,
i) radiation pressure damping,
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The issue of photothermal excitation is addressed in section 6.5.2. The e�ects in detail:

(a) has been described above.

(b) is a direct consequence of (a): If the mirror oscillator responds to the intensi-
ty 
uctuations of the light wave, then conversely these 
uctuations are in
uenced by
the mirror motion and are in the ideal case smoothed out below the shot noise limit
[88, 63, 148, 261, 86].

(c) is the counterpart of (a) in the classical domain: If the laser wave carries in additi-
on to its coherent state quantum noise classical intensity 
uctuations, the stochastic force
driving the mirror will be larger, so the back action will be detectable for light powers
lower than those needed in (a).

(d) is in principle the same as (c), only that here the laser's intensity 
uctuations are
not random, but due to an amplitude modulation at the mirror's resonance frequency.

(e) is just the classical radiation pressure due to the mean electric �eld of the laser
wave. It leads to a cavity lengthening due to the circulating light power. The bistable
response of the cavity in dependence of the input laser power or the laser frequency descri-
bed in [58, 157, 75] is a direct consequence of this e�ect, since the DC radiation pressure
makes the cavity length and thereby the cavity detuning intensity dependent.

(f) is an important classical radiation pressure e�ect, which may lead to opto-mechanical
feedback: Due to the mirror'smotion and the cavity detuning thus caused, the laser wave's
mean �eld amplitude inside the resonator and accordingly the radiation pressure changes
in phase with the oscillator's movement. This leads to a power dependent excitation or
damping of the oscillator's motion.

(g) is similar to (f), only that here the change in the circulating laser power is due
to the modematching of the laser wave into the resonator. Since the torsional motion of
the oscillator leads to an angular modemismatch, again a DC radiation pressure change
in phase with the oscillator's movement occurs.

(h) is due to the classical frequency noise of the laser, which is transformed by the
detuning relative to the cavity resonance into an amplitude 
uctuation inside the resona-
tor.

(i) is a somewhat exotic e�ect, to be calculated relativistically. It was �rst pointed
out by Braginsky [22] and recently reanalyzed in [153]: If a mirror moves in the same
direction as the incident light wave, the 
ux of the incident photons decreases because
of the increase of the light path (reverse for a mirror moving in the opposite direction).
This causes an e�ective damping of the mirror motion, since the force of the light pressure
depends on the mirror's velocity.
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It should be noted that only (e)-(i) are dependent on fact that an optical resonator is
employed in the experiment. For all other e�ects, the resonator is merely an instrument
to gain su�ciently high light power.

5.4.2 Estimation of in
uence of the e�ects

(a) is the primary goal of the setup, see also Sec. 6.7 for e�orts of other groups.

(b) would a stringent way of proving quantum back action, when (a) has been de-
tected for example by power dependence measurements. The setup would only require a
homodyne system for the light back-re
ected from the moving mirror cavity.

(c) According to [246] the in
uence of classical noise inside the resonator on the moving
mirror is the same as the shot noise. Since the scaling of classical noise outside of the cavity
goes with the power P instead of

p
P as for the shot noise, we have the curious fact, that

taking half the �nesse and four times the input power, yields a smaller classical back action
whereas the quantum back action remains unchanged. Amplitude noise measurements of
the laser have been described in the �rst part of this thesis, Sec. 3.1.1. For measurements
at the frequencies of interest (20-30 kHz) only slight changes of the detection system are
necessary. For powers of 10 mW typical values of 20 dB excess noise of the laser with
respect to shot noise were measured at 20 kHz. Thus classical back action should be �100
times stronger at P = 10 mW than quantum back action.

In the long run the in
uence of classical noise on the mirror motion should be pre-
vented. This can be done by implementing an intensity stabilization of the laser. Noise
reductions close to the shot noise level at low frequencies have been achieved [250] (see
also [35]). On the other hand, the presence of technical intensity noise may be used in a
�rst step to demonstrate the possibility to observe opto-mechanical back action e�ects in
an experiment.

(d) has been observed in our experiment quite easily even at room temperature, which
shows that in principle the detection of radiation pressure e�ects is experimentally fea-
sible with the present setup. Some remarks about possibly involved thermal e�ects are
noted in Sec. 6.5.2. For excitation of micromechanical sensors by modulated laser beams
see also Sec. 6.6.2.

(e) has been described for example in [152, 44]. The corresponding optical bistability
has been demonstrated beautifully in [58] and [75]. Both do not play a major role in
our experiment, since our oscillator mirror responds mechanically only in a narrow band
around its resonance frequency and not at 0 Hz DC. It has, however, important side e�ects
when the mean electric �eld amplitude is in
uenced by the oscillator's motion (see (g),(h)).

(f) is an e�ect strongly dependent of the linewidth of the cavity: The expected displa-
cements of the oscillator of �x � 10�14m cause a frequency shift of �� = 2�xFSR=� �
660 Hz. With a present linewidth of 1 MHz this results in power 
uctuations of �P �
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4 � 10�7 � Pc, where Pc is the circulating intracavity power.
It was clearly observed in our experiment that the excitation of the mechanical os-

cillator by a piezoelectric transducer to displacements one or two orders of magnitude
above the one of its thermal motion does in fact lead to classical feedback e�ects with the
circulating light wave. At room temperature a damping and enhancing of the oscillator's
movement in dependence of the injected light power was observed. This made decay time
measurements of the mechanical oscillation via the error signal very imprecise. These
e�ects, dependent on the relative detuning between cavity and laser frequency, were dif-
�cult to quantify. (It has to be noted that feedback e�ects due to laser detuning by the
employed locking circuit may have had an in
uence as well, since for large detunings the
feedback signal around 26 kHz could not be completely eliminated.) Similar e�ects have
been observed and made use of in setups employing microoscillators. For strong light
powers and non-zero detuning even self-oscillation has been observed (c.f. Sec. 6.6.2, see
also chapt. 1.3 of Ref. [23]).

In principle for a stabilization exactly on resonance, not an !0-dependence of the
generated amplitude modulation of the intracavity �eld arises, but a 2!0-dependence,
which provides no direct feedback to the oscillator's motion. Such a stabilization however
is di�cult to achieve with a moving mirror cavity and maybe in this case parametric
e�ects as the ones described in Sec. 6.1.5 have to be taken into account. For clari�cation,
note that for the intended interferometric measurement method it is crucial that at the
measurement frequency, which is equal to the oscillator's resonance frequency !0, the laser
frequency does not follow the cavity length changes. Thus the power 
uctuations outlined
here form an intrinsic part of the system and are not compensatable via feedback.

For the planned improved �nesse, these e�ects become stronger, since the relative
power 
uctuations scale quadratically with the �nesse, due to the cavity resonance's
Lorentzian line shape. For high �nesse values we can approximate the cavity resonance
by f(�) = 1=(�2+ a2) � 1=a2� �2=a4 where � = 2�x �FSR=� is the detuning for a cavity
length change �x and a = FSR=2F is half the linewidth. Thus expected displacements
�x � 10�14m and improvements of the �nesse by a factor of 10 lead to non-negligible

uctuations

�P =

 
1� f(�)

f(0)

!
Pc � �2

a2
Pc =

�
4�xF
�

�2
Pc � 4 � 10�5 � Pc : (5.25)

To set these power 
uctuations in relation to the shot noise we note that the relation
of circulating to incident power is Pc=P � (1 � R1)F=(1 � p�)� � F=�. Thus �P �
(4�x=�)2=�F3 P � 1 � 10�15 F3 P . In comparison, the intracavity shot noise 
uctuations

per unit bandwidth �f can be approximated by �P=
p
�f �

q
hc=� � F=� � pP , which

results in power 
uctuations of �P � 1 � 10�11pW F pP within the bandwidth of the
oscillator �f � 10�2 Hz. For incident powers P in the mW range this is less than the
estimated classical 
uctuations, already for moderate �nesse values.

The reason why this problem usually does not appear in theoretical calculations re-
garding quantum e�ects optomechanical systems is, that the parameter of the cavity
detuning is usually cancelled in the mean �eld approximation [175, 63, 246].
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(g) is given by the mode overlap of the incoming Gaussian beam 	(x; y; z) with the
Gaussian beam inside the resonator 	� = 	(x�; y; z�), which is rotated by an angle � due
to the oscillator's torsional motion. Here x� = x � �z and z� = �x + z are the rotated
coordinates. The Gaussian beam is given by [122]

	(x; y; z) =
1

w(z)

s
2

�
exp[�x

2 + y2

w(z)2
� i

x2 + y2

2R(z)2
� ikz + iArctan(

z

z0
)] ; (5.26)

where w(z) = w0

q
1 + (z=z0)2 is half the beam's diameter at point z of a beam with waist

w0 and Raleigh range z0 = �w2
0=�. The overlap function is given as the integral over the

cavity volume

I(�) =
1

Lz
Re
Z Z Z

		�
� dxdydz; (5.27)

where Lz is the cavity length. Approximating for small angles and a short cavity gives

I(�) � Re
Z
e
� x

2

w
2

0

�ikz
dx � 1 � �2k2w2

0

8
; (5.28)

With a distance d = 1mm of the laser beam from the torsional axis, the torsion angle
for a displacement �x = 2 � 10�14m is given by � = Arctan(�x=d) � 2 � 10�11 rad. This
results in power 
uctuations �P � 1 � I(�)2 � 10�17Pc. These are negligible compared
to the ones estimated in (f).

(h) The frequency noise of the laser is expected to be about SFN = 1Hz2=Hz around
!0 [45]. Integrated over the width of the resonance of the mechanical oscillator ��0 �
0:013Hz gives a frequency uncertainty of �� = 1Hz2=Hz ���0 �=2 = 0.014Hz, which is
small compared to the frequency 
uctuations introduced by the oscillator's motion (g).

Nevertheless this noise source must not be neglected, since it disturbs the shot noise
limited detection at frequencies away from the oscillator's resonance. A reduction of the
laser frequency noise to 10�3Hz2=Hz by means of a high �nesse reference cavity has been
demonstrated [19]. In our case, a combination of such an active frequency noise reduction
and an increase of the FSR of the sensor cavity can be used.

(i) The e�ect of \radiative friction" is described in [153]: With the values of our
experiment, the damping factor of the mechanical oscillation �RF = P=(mc2F2) � 2 �
10�4s�1 (corresponding decay time 1=�RF ) is presently 2 orders of magnitude smaller
than one that would be detectable with our oscillators which have decay times in the
range of 20-50 s. However, an improvement of the �nesse by one order of magnitude
would bring this e�ect into the realm of measurability.



6 Experiment II: Interferometric posi-

tion measurements

6.1 The mechanical oscillator

6.1.1 Basic description

2 cm

4 cm

Figure 6.1: Silicon torsional oscillator employed as the moving mirror in the experiment.

In our experiment, the movable mirror is a silicon torsional oscillator. The devi-
ces employed in the experiment were manufactured at the Institute of Microtechnology,
Neuchâtel in collaboration with N. Blanc, and N.F. de Rooij and by E. Steinsland at the
company Sintef, Oslo. Micromachined oscillators of this kind have already found use in
condensed matter studies [118, 119, 158, 270]. A general overview about the techniques
of silicon micromachining is given in [55]. Our oscillator has been fabricated the following
way: A thick oxide layer was thermally grown on both sides of a highly polished com-
mercial p-type 5
/cm silicon wafer with < 100 > orientation. The oscillator was de�ned
by double sided lithography and the structure was etched free in a 60�C KOH solution.
The size of the whole structure is 4 cm � 2 cm. The design and room temperature pro-
perties are reported in [37]: It is made up of two coupled oscillators consisting of an inner
frame and a vane connected by two torsion bars. The oscillator has a symmetric and an
antisymmetric mode. Only the antisymmetric mode has a high Q resonance due to low
stress concentrations in the beams connecting the two coupled oscillators to the frame.
Fig. 6.2 left shows this vane-frame torsional oscillation with an exaggerated amplitude.

89
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b

c

a

L

Figure 6.2: Left: Vane-frame torsional oscillation (exaggerated amplitude) generated by
an FEM-simulation. The point o�-axis where the laser beam is re
ected from the coated
inner vane in the cavity setup is depicted in the sketch on the right side.

The geometry of the vane is shown in Fig. 6.2 right, with the corresponding proportions
listed in the following table:

a b c L h �0 Jt
[mm] [mm] [mm] [mm] [mm] [kgm2] [m4]

2 0.39 2 2.2 0.39/0.29 9:6 � 10�12 3:3 � 10�15

The resonance frequency �0 and the oscillator's e�ective mass m can be obtained from
these data by the equation of motion (without damping)

��� = �M = �2JtG

L
�; (6.1)

whereM is the torque, G the shear modulus in the appropriate crytallographic orientation
and Jt the static torsional moment of inertia of the bar. The factor 2 comes from the fact,
that the vane is held by two bars. Comparing with Eq. 5.1 we see that 2JtG=L plays the
role of the spring constant for the torsional motion. Writing the equation as

��+ !20 � = 0; (6.2)

we get

�0 =
1

2�
!0 =

1

2�

s
2JtG

�L
: (6.3)

The total moment of inertia � is given by the moment of inertia of the vane �v =
2�cha3=3 plus a small correction term of the moment of inertia of the moving part of the
torsion bar �b = �bh(b2 + h2)=12. The correction term can be estimated according to
[239](p.344) by assuming that the rotation angle of the bar is �xed at one end and at the
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other end is equal to that of the vane. Integration over the whole bar and taking into
account that there are two of them that hold the vane yields � = �v +2�b=3. Note that
�b is usually 2 orders of magnitude smaller than �v.

The static torsional moment of inertia Jt of a single bar with a rectangular cross
section has been derived in [238]:

Jt =
hb3

3
�l; (6.4)

where �l is a numerical factor, depending on the ratio h=b. For h � b we have �l = 0:141.
(Note that for h 6= b always the smaller one of the two values has to be taken to the third
power).

For the proportions listed in the table above we calculated and measured resonance
frequencies of �0 � 21 kHz for the oscillators with thickness h = 290�m, and �0 � 26 kHz
for the ones with h = 390�m.

After fabrication of the structure and removal of the oxide, the vane was coated on
one side with a high-re
ectivity dielectric coating for 1064 nm. Since the torsion bars were
protected by a steel mask during the coating run, the 4.3 micron coating of SiO2/Ta2O5

did not cause a substantial change in the mechanical properties of the oscillator. The
higher mass of the coated vane led to a slight decrease of the resonance frequencies (see
also [182, 270]).

As shown in Fig. 6.2, when the oscillator is part of the optical cavity the laser beam
is re
ected at a distance d from the torsional axis, so that the torsional motion leads to a
cavity length change. The e�ective mass m in the expressions of Eq. 5.1 is for a torsional
oscillator given by �=d2. With a distance d of � 1mm this leads to m � 10mg.

6.1.2 Fastening of the oscillator

Since any contact of the oscillator to the external world contributes to its energy dissi-
pation, fastening the oscillator without introducing mechanical losses is a crucial task in
our experiment. In the �rst series of measurements the oscillator was clamped by a gilded
tip pressed by a spring onto the center of one of the two large areas at the head or the
bottom of the oscillator. Since this fastening method did not yield a completely stable
position of the oscillator in cavity measurements and especially led to problems during
the cool down periods in the cryostat, it is now only used for testing new oscillators.

The most promising method of mounting the oscillator is until now the following:
The oscillator is glued by stycast epoxy onto an Invar holder at four small spots situated
at its four corners. Since both silicon and Invar have very small temperature expansion
coe�cients (�L=L from 300K to 4K Si: � 0.03 [130], Invar: 0.05 [183]), this mounting
does not introduce too much strain onto the oscillator when cooled down to 4 K. It has
the big advantage that the cavity setup remains in a �xed position even during drastic
temperature changes. Furthermore, the bending motion of the oscillator (� 2 kHz) which
makes cavity stabilizations very di�cult, is largely suppressed. For changings in the setup,
the oscillator can be released from the Invar holder by application of formic acid. The
�nesse of the mirror coatings did not degrade by such a treatment.
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6.1.3 Measurement of the quality factor
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Figure 6.3: Typical decay time measurement at cryogenic temperatures. After the
excitation via a piezoelectric transducer is switched o�, the oscillator rings down in � 100
s. The oscillation frequency shown is the beat frequency between the natural oscillation
at !0 and the detection frequency of the lock-in ampli�er.

Mechanical damping depends both on gas pressure and temperature. Best values
are obtained in vacuum and at low temperatures, but usually still depend on clamping
loss. Physical limits for highest obtainable Q-values are given in [24]. A general over-
view of e�ects responsible for internal friction is given in [67] and chapt. 2 of Ref. [24].
Thermoelastic internal friction is discussed in [203].

To characterize the properties of our oscillator, a simple optical setup was used. The
oscillator is clamped to a mount attached to a piezoelectric transducer in a cryostat va-
cuum chamber. A diode laser is shined on the torsional vane and the re
ected light
is detected with a segmented photodiode, which gives a signal proportional to the an-
gular displacement of the torsional oscillator. The oscillator is mechanically excited at
resonance. After the excitation is turned o�, the amplitude decay is measured using a
lock-in ampli�er as a demodulator with a slightly detuned reference frequency. A typical
measurement is shown in Fig. 6.3. The curve's envelope is �tted by a single exponential.

Another method of determining the Q-value is the measurement of its linewidth.
The setup is the same as before and the excitation frequency is gradually increased via
computer control, while the oscillator's amplitude response is recorded. Typical measu-
rements are shown in section 6.1.6 for microoscillators. For medium decay times (room
temperature) both methods gave comparable results, for long decay times (cryogenic tem-
peratures) the ring down measurements were more accurate, for very short decay times
(microoscillators) scanning the linewidth worked best. A third method for determining
the oscillator's Q-value is the measurement of its linewidth via the Fabry-Perot interfero-
meter, described in section 6.5.

The pressure dependence of the oscillator's Q-factor has been described in [37]. It
was found that for a pressure < 10�2mbar the friction due to the gas molecules of the
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Figure 6.4: Temperature dependence of the quality factor.

environment is negligible. It is interesting to note that the pressure dependence for the
microoscillators of the same design presented in section 6.1.6 is almost the same, despite
the scaling factor of 20.

As for the temperature dependence, the quality factor increased from � 200 000 at
room temperature to >2 000 000 at 4K due to a reduction in phonon scattering. Fig. 6.4
shows the Q-factor of a coated oscillator in the temperature range 300K - 2K. In the same
temperature range the resonance frequency increases by about 100Hz, due to changes in
the elastic constants.

The Q-factor measurements presented here are still one order of magnitude lower than
the presently best ones for macroscopic silicon torsional oscillators [118, 270]. This has
or may have �ve reasons: (i) better fastening methods, (ii) Si-material (low n-doping),
(iii) di�erent etching techniques, (iv) slightly di�erent design, and (v) measurements at
temperatures <1K. The �rst three points will be further investigated in the future deve-
lopment of the experiment, design changes are discussed in section 6.1.4, the operation
at lower temperatures is presently not possible in our experiment, due to the employed
cryostat.

Comparable or higher Q-values for mechanical oscillators besides torsional oscillators
have only been observed for bulk-oscillations [155] or pendulum modes [24, 249]. The
application of either of them would require a di�erent design of the experiment leading
to di�culties outlined in section 6.7.

As a conclusion, the Q-values achieved so far should be high enough to reach the goals
outlined in the previous chapter with the present experiment. Yet improvements by an
order of magnitude may still be possible.
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6.1.4 Possible changes in the oscillator design

Figure 6.5: Lasercut oscillators of di�erent designs. Left design: Vane held by only one
bar to reduce the internal friction and to lower the resonance frequency, middle: stretched
bar of decoupling frame for better isolation from the clamping area, right: test of scaling
properties.

A look at the ratio between thermal noise and quantum back action
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shows which features of the mechanical oscillator are important: Low mass, high Q,
low frequency. Since in these formulas the e�ective mass does not only depend on the
oscillator's weight, but also on the distance d of the laser beam from the torsional axis,
hardly anything is gained by a simple scaling of the oscillator's size which would also
make high-�nesse coatings and cavity alignment more di�cult. Furthermore, to keep the
optical losses due to �nite size e�ects of the mirror below 0.5 ppm, the distance between
the center of the laser beam to the edge of the high re
ection coating should exceed 5
times the beam waist, which shows that for realistic waists of 100� the scaling of the
vane's side c can't be reduced by much. Only the oscillator's thickness should be kept
as small as possible. Technical limits for superpolished Si-wafers are 250-300� (Crystec,
Berlin).

The highest mechanical Q-factor for silicon torsional oscillators has been achieved with
a structure similar to the here employed Buser-design [118, 270], with the most important
di�erence that vane and decoupling frame are held only at one side by a single bar. The
advantage is a reduction of the internal friction and losses due to surface e�ects and a
lowering of the resonance frequency. Furthermore, lengthening the bar of the decoupling
frame leads to a better isolation of the whole oscillator from the environment (reduced
clamping losses) [271]. Both changes in the design, however, have the disadvantage, that
the bending motion of the oscillator is enhanced. Thus laser frequency stabilization to the
cavity length in the setup of the interferometer will be more di�cult. As a test, di�erent
oscillators designed by AUTOCAD were fabricated via laser cutting by a local company
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and by the Fraunhofer Institut f�ur Lasertechnik in Aachen. This also served as a test for
alternative production methods that don't involve the lengthy and expensive fabrication
of the etching masks.

It turned out that the surface quality of the cut edges is much inferior to that achieved
by etching (small bubbles of melted Si, �ssures, di�usion of the surface protection coating
(hairspray or spin coated photo resist)). No Q-factors >40 000 were obtained, making it
di�cult to quantitatively evaluate the in
uence of the geometry on the Q-factor. Fig. 6.5
shows the tested oscillators. The leftmost design was also realized by removing via laser
cut one bar of an etched oscillator of Buser-design. With this device, the lowering of
the resonance frequency by a factor of

p
2 was demonstrated, while no signi�cant change

of the Q-value was observed. As a conclusion, for the near future further experiments
with the modi�ed design (Fig. 6.5 left), could be done by the tested combined fabrication
method (etching, laser cutting) or by using the existing etching mask with a slight modi-
�cation. General tests of oscillator designs need fabrication methods more reliable than
laser cutting.

6.1.5 Nonlinear mechanical e�ects

Any real mechanical oscillator driven to high enough amplitudes will exhibit some
kind of nonlinear behavior. Since the �rst half of this thesis deals with nonlinear optical
e�ects, and since nonlinear mechanical e�ects may change the responsivity of the oscil-
lator and have an in
uence on decay time measurements, a short investigation is helpful
for comparison and for future characterizations of the oscillators. As in the optical do-
main, the observed e�ects can be divided into (a) harmonic generation, (b) sub-harmonic
generation (parametric e�ects), and (c) bistable response (third order e�ects).
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Figure 6.6: Decay of the oscillator's !0 and 2!0 resonances. The pure exponential decay
of the !0-oscillation does not start until the 2!0-oscillation has become small enough.
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Figure 6.7: Strong excitation of the oscillator leads to the generation of higher harmonics.
Here the �rst 3 harmonics of the !0-oscillation are shown.

The second harmonic generation is shown in Fig. 6.6 employing the same measuring
device as for the Q-measurements in section 6.1.3. For strong enough excitation at the fre-
quency !0, the oscillator starts oscillating at 2!0 as well. When the excitation is switched
o�, the in
uence on the decay time can be observed: The energy of the 2!0-oscillation is
transferred to the !0-oscillation, leading to a non-exponential decay. Thus much longer
decay times for the !0-oscillation are measured, leading to an arti�cial increase of the
oscillator's mechanical Q. It is interesting to note, that, although the decay time � � of
the 2!0-oscillation is shorter than that of the !0-oscillation, the Q-factor, being de�ned
by � ��f is higher for the harmonic (330 000) than for the sub-harmonic (230 000).

Not only the second order but still higher harmonics were observed by strong excita-
tion at the frequency !0. Fig. 6.7 shows the �rst four harmonics measured by a spectrum
analyzer. With a lock-in detector the 10th harmonic was still detectable. The measure-
ment of the mechanical Q for di�erent overtones has been used as a tool for analyzing the
origin of acoustic wave attenuation [62].

Mechanical parametric ampli�cation and deampli�cation with a corresponding change
of the thermal noise characteristics has been beautifully demonstrated in [206]. E�ects of
this kind are probably not usable to enhance the sensitivity of the interferometer, since
damping of the noise 
oor leads to a damping of the signal as well. Nevertheless they
contribute to a better understanding of the oscillator's noise behavior.

In classical mechanics the parametric interaction is described by Mathieu's equation

m�x+ � _x+ (k + � cos(!1))x = F cos(!0 + �): (6.6)

If !1 = 2!0, a �-periodic phase-dependence of � leads to ampli�cation and deampli�ca-
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Figure 6.8: Mechanical parametric oscillation: Starting from a certain power of the 2!0-
pump �, the subharmonic !0 starts oscillating. The dip at higher excitation strengths is
due to destructive interference between the !0- and 2!0-oscillation.

tion of the oscillator's amplitude x. If the input signal F is equal to zero, a parametric
oscillation with a certain mechanical threshold �0, depending on the oscillator's Q-factor
is expected. In our experiment, !0-signal input and 2!0-pump were realized by two piezo-
electric transducers, exciting the oscillator mechanically at two di�erent points. Fig. 6.8
shows the parametric oscillation with no signal input, having a well-de�ned threshold
power for a certain pump strength �. With a weak signal input the phase dependence
of the parametric e�ects was measured as well. The third nonlinear e�ect, bistable re-
sponse, was observed only for high-Q cryogenically cooled oscillators. Scanning slowly
the excitation frequency, asymmetric line shapes were reproducibly found.

6.1.6 Investigation of microoscillators

We investigated micromechanical Si-structures to test new fabrication technologies,
to examine the in
uence of scaling on the mechanical Q-factor, and also because many
experiments on optomechanical coupling have previously been carried out in this area
(Refs. see Sec. 6.6.2). Such oscillators are of practical use as pressure sensors, light mo-
dulators, accelerometers, tactile, 
ow, temperature, or radiation sensors (see the reviews
[197]). They are also used to approach the investigation of phonon �nite-size e�ects [78],
for high precision electrical charge measurements [48], or as magnetometers [2].

The fabrication of the two oscillators presented here was done by Thomas M�uller,
ETH Z�urich/Austria Mikro Systeme, Unterpremst�atten. The etching process is described
in detail in [162]. By doping and electrochemical etch stop techniques very thin n-well
membranes were de�ned, out of which the structures were etched. The oscillator we
investigated �rst was 4.5�m thick with an overall size of 1x2 mm. Except for the scaling,
the design, shown in Fig. 6.9, is the same as the one from Buser et al. [37]. With
the notation of section 6.1 the proportions of the vane are a = 100�m, c = 100�m,
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Figure 6.9: Photograph of the microoscillator. The overall size is 1x2 mm. Traces of the
electric contacts necessary for the processing are still visible.

b = 20�m, L = 105�m. The measurement of the oscillators resonances is done the same
way as described in section 6.1.3. Fig. 6.10 shows a typical spectrum. The resonance of
the vane can be identi�ed with the peak at 130 kHz. Its frequency is a bit lower than
the one theoretically predicted of 144 kHz, due to the \soft" boundary conditions for
the torsion bars inside the thin n-well structure, compared to rigid clamping assumed
in the analytical model. The Q-value amounted to 27 400. This is of the same order of
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Figure 6.10: Spectrum of the microoscillator. The sharp narrow resonance at 130.5 kHz
is due to the torsional movement of the vane. The Q-value, obtained by measuring the
width of the resonance, amounted to 27 400.



6.2. Optical coating and cleaning 99

magnitude as values achieved with similar structures fabricated at Caltech in Pasadena
[194]. Other micromachined torsional Si-oscillators reported earlier [180] showed much
lower Q-values.

By reducing the size of the oscillators even more (a = 45�m, c = 50�m, b = 20�m,
L = 32�m, h = 10�m), the Q-value degraded. The best resonance at � 2 MHz was �tted
with a Q-value of 7300. Though the two microoscillators are not directly comparable since
the etching procedure varied, it seems that due to the dominance of surface losses higher
Q-values can be more easily achieved with larger structures.

With other designs than the ones reported here, Q-values of � 106 have been measured
for Si-oscillators of �m size [78] and Q-values of 20 000 for nanometer scale Si-oscillators
with resonance frequencies >70 MHz [47]. This and the prospect of becoming able to fa-
bricate macroscopic mechanical devices with thicknesses of tenths of micron or in the long
run even fabricate micromechanical structures that exhibit quantum mechanical behavior
should spur further e�orts in these investigations.

6.2 Optical coating and cleaning

So far two attempts were made to supply the vanes of the Si-oscillators with high �nesse
coatings. One was carried out at the Laser Zentrum Hannover (LZH) and one by Re-
search Electro Optics (REO), Boulder. In both cases the oscillators were cleaned directly
before the coating. In Hannover we cleaned with lens tissue and ethanol until the os-
cillators appeared to by dustfree under a microscope. The coating itself consisted of a
4.3 micron layer of SiO2/Ta2O5 (LZH). Apart from employing di�erent masks, so that
the coated area was larger in the second run made in Boulder, no signi�cant di�erences
between both coatings were found. The more homogeneous LZH-coatings were used in
the measurements presented below.

Since the packaging for the shipping after both coating runs was not optimum, and
since the oscillators had to be handled quite much (glueing, aligning) before being placed
in the vacuum chamber, we had to investigate cleaning methods. For the fragile oscillator
vanes it worked best to rub gently in one direction with lens tissue using as a solvent
�rst acetone and afterwards iso-propanol. For the mirrors a spinning device was employ-
ed, using (medical) cotton-wool tips and the same solvents as above. The e�ciency of
the cleaning was checked by observation of the substrates with a dark �eld microscope.
Although �nesse values improved, cleaning methods are still not optimum.

For some of the oscillators it was also necessary to remove scattered coating material
from the oscillator's backside. This was successfully done by using a HF-bu�er (H2O,
HF 50%, NH4F 40% ratio 40:7:1) after having protected the coated vane with a special
photoresist.

The best values we obtained in �nesse measurements were 30 000 (employing for the
cavity an incoupling mirror with measured re
ectivities/losses for a �nesse of 60 000).
For the cavity used in the actual setup the �nesse values were lower since the vane was
inhomogeneously coated and the di�cult cavity alignment did not always allow �nding
the spot with the highest �nesse. Furthermore the beam position shifted slightly during
the cool down period in the cryostat.
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Measurements of the single pass transmission of the coated vanes gave transmission
losses of T =� 5�10�5. Since �nesse measurements indicate total losses of A+T = 4�10�4,
we have to assume that the major loss factor is the scattering on the coated silicon vane.
This is con�rmed by the low incoupling C of about 10%, which indicates a scattering loss
of A = �(1+

p
1 � C)=F = 4 �10�4. The total cavity transmission amounted to � 3 �10�3.

6.2.1 Surface quality measurements

To be able to give a more precise estimation of the limiting factor for the obtainable �nesse
values, we investigated the surface quality of the Si-substrates. A one-parameter descrip-
tion of the surface quality for a speci�ed area is given by the RMS roughness, de�ned

as the height variance of the recorded points of this area: �hrms =
q
< (h� < h >)2 >.

Other important characteristics are the peak-to-valley ratio of the surface structures, and
their lateral frequency.

Meaningful surface measurements on superpolished substrates are not done easily,
they should cover an area comparable to the employed beam waist (100�m) and should
have sub-Angstrom vertical resolution. We employed four di�erent instruments to obtain
surface data:
1) An AFM, here in Konstanz,
2) a ZYGO Maxim 3D at the MPI in Mainz,
3) Total Integrated Scattering (TIS) measurements of the Fraunhofer institute in Jena,
4) a Micromap Phase-shift Mirau Micro-Interferometer in Boulder.

The AFM measurements were done on areas in the �m regime. RMS values < 10�A
were obtained (coated segments slightly higher). This is in agreement with the values
speci�ed by commercial Si-polishers for unprocessed wafers. AFM measurements of the
company Crystec, Berlin showed typical values of 3�A. The ZYGO measurements resulted
in RMS values of 10-20�A for areas of 60x80�m and 20-30�A for areas of 600x800�m.
No di�erence was found between processed and unprocessed wafers. The validity of these
measurements is limited though, since a superpolished Si-wafer, comparable to the probes,
was used for the calibration of the instrument. The TIS-measurements were not yet ready
at the time of �nishing this thesis.

The Micromap measurements are perhaps the most informative and reliable ones.
Fig. 6.11 shows the image of an uncoated vane of a Si-oscillator in comparison with that of
a quartz substrate. As can be seen, the most dominant structures have lateral extensions
of � 30�m and the RMS roughness of 4�A is one order of magnitude larger than that for
the quartz substrate. We estimate that this is the dominant loss mechanism so far.

The relation between RMS roughness and cavity losses due to surface scattering is
given by

�S =

 
4��hrms

�

!2
: (6.7)

Thus given the measurements of this section, scattering losses of �S = 2:5 � 10�5 result in
a limiting value for the �nesse of F < 240 000.

In conclusion it should be said that, although the provided coatings with �nesse values
of 10 000-30 000 have not met our expectations so far, it is, to my knowledge, the �rst time
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Figure 6.11: Surface measurements of the vane of the silicon torsional oscillator before
coating (upper image) in comparison with a quartz substrate used for high �nesse coatings.
Both images were taken with a Micromap interferometer. The waviness of the Si-surface
can clearly be seen. Note also the di�erence in the scaling of both plots.

that high-�nesse coatings were applied to silicon substrates. For the �rst experimental
tests of the cavity stabilization and measurements of the oscillator's Brownian motion, the
�nesse values of the coatings so far were su�cient. For further experiments, improvements
by a factor of 10 are necessary. Regarding the surface measurements of this section this
should be possible to achieve.

6.3 The cryostat

The cryostat was designed especially for this experiment by the company Cryovac, Trois-
dorf. It is cooled by 4He without nitrogen pre-cooling. It contains an upper storage vessel
with a capacity of 7 l and a lower 2.3 l vessel, which is used for cooling by evaporation
of 4He. Besides the main outer steel envelope, the LHe tanks are protected by three
copper radiation shields each covered with layers of superinsulation. Of the four suprasil
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Figure 6.12: Schematic of the experiment. PD photo detector, BS beam splitter, EOM
electro-optic modulator.

windows tilted by an angle of 5� to avoid back re
ections, we replaced two by copper
rings, to minimize the loss of the laser beam traversing to and from the main chamber
(� 160mm, height 70mm). The temperature inside the cryostat is monitored by two
calibrated germanium sensors, one �xed at the bottom plate of the lower He-tank, the
other in the Invar holder near the oscillator's vane. For temperatures >40K a Pt-100
resistor is employed. Once cooled down in � 6 hrs the cryostat remains at 4K without
re�ll for more than 24 hrs. The lowest temperature achieved so far by pumping the lower
4He-vessel was 2.2K.

6.4 The setup

A schematic of the experiment is shown in Fig. 6.12. The optomechanical sensor
is housed in the LHe-cryostat. The Invar holder onto which the oscillator is glued is
attached to a larger Invar block �xed tightly to the bottom plate of the lower 4He-vessel.
A rigid incoupling mirror is mounted on the block's side opposite to the oscillator mirror,
thus forming a cavity of length Lc=1 cm (free spectral range FSR=c=2Lc=15GHz). The
concave input coupler with 10 cm radius has a transmissivity 1 � r21 = 50ppm. The
�nesse of the cavity is F =15 000 (undercoupled), limited by the loss of the oscillator
mirror. A 300mW diode-pumped monolithic Nd:YAG laser (Lightwave model 122) is
used as a light source, with typical laser powers incident onto the cavity around 5mW.
The beam traverses an EOM (Gs�anger) which is driven by a function generator (HP
33120 A) having an HF-ampli�er (minicircuits ZHL-6A) added at its output port. The
electronic power transfer to the EOM is enhanced by a resonance circuit. Thus at phase
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Figure 6.13: Schematic of the cavity employing the vane of the silicon torsional oscillator
as a moving mirror.

modulation frequencies around 13MHz a modulation index � = 0:8 was reached. We
veri�ed via homodyne detection that in this frequency range the laser intensity noise level
is at the shot-noise level for the given 5 mW power level. The read-out sensitivity was
therefore not limited by technical laser noise.

Since the rigid incoupling mirror was not adjustable, in order to keep the cavity
alignment stable during the cool down period, modematching of the laser mode into the
cavity situated inside the cryostat was a tedious task. A modematch e�ciency of � 50%
was typically reached.

The back re
ected beam is split o� by a 80% beam splitter and directed to an InGaAs
photodetector (Epitaxx ETX500). In the earlier stage of the experiment a con�guration
with a �=4-plate and a polarizing beam splitter was used. It was discarded since the
circularly polarized light incident onto the cavity led to a polarization splitting of the
cavity modes when the system was cooled down. This indicates a birefringence of the
mirror coatings at low temperatures. Since the back re
ected beam loses 20% power at
the beam splitter and also has to traverse the two tilted windows of the cryostat (loss �
10%) the overall detection e�ciency � was � 65%.

A Pound-Drever technique was used to stabilize the laser frequency to the cavity
[59, 91]. The demodulation signal for the AC-output of the photodetector was provided
by a second HP 33120 function generator, phase-locked to the �rst one. By adjusting
phase and amplitude of both function generators an optimum error signal was generated.
Fig. 6.14 shows a typical scan across the cavity resonance with the corresponding error
signal.

The error signal was split into a high frequency part (>10 kHz), which serves for the
analyzation of the oscillator's motion and a low frequency part, which is directed to the
fast-input of the laser control to regulate the laser frequency via a piezoelectric transducer
glued onto the laser crystal. The bandwidth of the feedback loop for the locking is 300Hz.
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Figure 6.14: Scan of the laser frequency across the resonance of the cryogenically cooled
cavity (lower �gure). The two sidebands at � 13 MHz are clearly visible, the �nesse
amounted to 11 000 in this measurement. The corresponding error signal is shown above.

In addition, an extra band�lter at the oscillator's resonance 26 kHz had to be inserted to
avoid electronical feedback to the oscillator's motion. At room temperature, the frequency
lock was stable over minutes, on quiet days with low seismic noise even for tens of minutes.
At cryogenic temperatures the lock became unstable after seconds. This is either due to
temperature e�ects, or to the ten times enhanced mechanical responsivity of the mirror
oscillator due to its increased mechanical Q. The problem of seismic disturbances due to
boiling LHe can be circumvented by operating the system after the cool down period for
1-2 hours with empty storage vessels.

While the laser frequency is stabilized to the cavity, the high frequency part of the
error signal is either analyzed by a lock-in detector to measure the oscillator's motion in
the time domain, or by a spectrum analyzer for quantitative evaluations in the frequency
domain.

For adjustment of the cavity and control of the lock stability a second detector and a
CCD-camera is placed at the rear side of the cryostat to monitor the transmitted beam.
The whole setup, including the cryostat, was mounted on a vibration isolated optical table
of Newport, Irvine CA.

6.5 Interferometric measurements of the oscillator's

motion

The setup with the optomechanical sensor allows detailed studies of the Brownian motion
of the moving mirror. The time domain analysis [206] of the oscillator motion is performed
by feeding the cavity detuning error signal into a two-phase lock-in ampli�er, with a
reference frequency equal to the resonance frequency !0. The integration time constant
corresponds to � . Fig. 6.15 shows a phase plot of the two quadratures of the error signal
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Figure 6.15: Phase space trajectory of the oscillator at room temperature driven by
thermal noise during a time interval of 80 s. One larger jump corresponding to a labo-
ratory disturbance can be seen. For comparison: the trajectory of an excited noiseless
oscillator would be just a point in phase space, since the coordinate system rotates with
the oscillator's resonance frequency !0, due to the detection method, employing a lock-in
ampli�er at !0.

near !0, showing the Brownian random walk of the oscillator at room temperature. Note
that this mapping of the oscillator's statistics in phase space comes quite close to the
measurements presented in the �rst part of this thesis, in particular the one of the thermal
state of the light �eld.

For a frequency domain analysis, the error signal is recorded with a SRS 780 FFT
spectrum analyzer. Recording with frequency intervals smaller than the oscillator's line-
width, enables us to determine mechanical properties from interferometric measurements.
In Fig. 6.16 a Q-factor measurement at room temperature is shown. To map out the line
shape a measurement bandwidth of one tenth of the oscillator's linewidth (� 0.01 Hz) is
used. Furthermore the spectra are averaged 10 times, to reduce the disturbances due to
background noise. For high Q-factors, such as the ones of the cryogenically cooled oscil-
lators the resulting time span of 20 minutes for the necessary 10 measurements exceeds
until now the time interval where the lock operates stable at low temperatures.

6.5.1 Quantitative evaluation, comparison with theory

The spectrum analyzer provides a power spectrum of the cavity detuning �2�, which is
equivalent to the square of the oscillator's displacement �x from 0 at a speci�c frequency.
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Figure 6.16: Linewidth of the mechanical resonance of the oscillator at room tempe-
rature, measured by reading out the error signal of the Fabry-Perot interferometer at
the oscillator's resonance. The Q-factor �=�� amounted to 140 000 in this measurement.
This is in agreement with decay time measurements for this oscillator, which was at room
temperature exposed to a slight strain due to the fastening by 4-point glueing.

To quantitatively evaluate the oscillator's motion, we performed short timemeasurements,
with measurement times � smaller than the decay times � � of the oscillator. In the
resulting spectrum one integrates over the whole mechanical resonance, thus making the
peak value at the resonance frequency comparable to a calibration signal generated by a
function generator whose linewidth is also negligibly small compared to the measurement
bandwidth.

The calibration signal is gained the following way: To the last stage of the lock-in
ampli�er used for the laser frequency stabilization via the fast-input of the laser control,
a weak modulation is added. The modulation frequency of 26 kHz was chosen to be
su�ciently separated from the mechanical resonance frequency, but su�ciently close so
that the error signal gain is the same. Knowing the modulation amplitude U determines
the amount of modulation ��, since the transfer coe�cient

@�

@U
= 4:54 � 0:2

MHz

V
; (6.8)

at 26 kHz was measured independently by scanning the laser frequency, using modulated
side bands as a reference. The calibration for the spacial displacement follows straight
from the cavity geometry: �xcal = ���=(2 � FSR).

Typically, the spectrum was recorded with a 0.25 s integration time. This is an order
of magnitude less than � �. Therefore the spectrum was averaged 30 times for room
temperature and 100 times for cryogenic measurements.
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Figure 6.17: The spectrum of the cavity detuning error signal at room temperature and
4.5 K. The peak at 26.2 kHz for the room temperature measurement and 26.3 kHz for the
measurement at 4.5 K has its origin in the Brownian motion of the mechanical oscillator.
The observed shift of the oscillator's resonance is due to the increased spring constant at
lower temperatures. The calibration peak at 26 kHz is obtained by frequency-modulating
the laser. The measurement bandwidth was 4 Hz. Note the di�erent vertical scaling of
the two coordinate systems, demonstrating the expected 10-fold decrease of the oscillators
amplitude at 4.5 K compared to room temperature.
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Fig. 6.17 shows two typical results. At 26.2 kHz for the room temperature measurement
and at 26.3 kHz for the cryogenic setup the motion of the torsional oscillator is clearly
observed. The measured noise levels of �x = 1:28 � 0:6 � 10�13 m at 300K and �x =
1:33 � 2 � 10�14 m at 4.5K agree with the theoretical expectation for thermal motion

�xTH =

s
kBT

m!20
=

(
1:3� 0:6 � 10�13m at 300 K

1:5� 0:7 � 10�14m at 4.5 K
(6.9)

The large error for the theoretical estimates comes from the fact that the distance d
of the laser beam's spot on the vane to the vane's torsion axis, which is used for the
determination of the mass m, can only be estimated up to a factor of 1.5.

To give an impression of the status of the experiment, the results of the two measure-
ments of Fig. 6.17 are marked in Fig. 5.2 of the theory section. With the present optical
power, improvements in the �nesse value by at least a factor of 10 are necessary to reach
the back action regime.

Note that for measurement times � smaller than the oscillator's decay time � � usually
a correction factor to �x2TH is introduced [267]. The argument for this is as follows. If
the oscillator's excitation amplitude as a function of time is recorded, the probability to
measure at a time � the amplitude x, given that at time 0 the oscillator's amplitude was
x0 is given by the conditional probability [80]

P (x; � jx0; 0) ' exp

 
� m!20hx� �xi2
2 kBT (1� e��=��)

!
; (6.10)

where �x = x0 e
�(�=��). In comparison with Eq. 5.23 the �nite speed of the oscillator's

thermal motion, the autocorrelation of its trajectory is taken into account. The variance
of this distribution leads to a corrected displacement uncertainty of

�x2TH;cor =
2 kBT (1� e��=�

�

)

m!20
� kBT �

m!20 �
� : (6.11)

This expression, however, is not in agreement with the observed behavior. In the measu-
rements done so far, no bandwidth (measurement time interval) dependence of the signal
height was observable for � < � �, i.e. BW > ��0. The reason for this is the following.
What is measured by a spectral analysis of an interferometric setup like the one presented
here, is not the change of the oscillator's amplitude at its resonance frequency, but the
root mean square value of its amplitude in the measurement interval. For an amplitude
distribution with a mean of 0, the latter is equivalent to a direct measurement of the
standard deviation �x. Thus for arbitrary short measurement times the approximately
correct thermal displacement uncertainty can be gained. The only restriction is that the
thermal probability distribution given in Eq. 5.23 is truly randomized only at time scales
comparable to � �. Thus in order to obtain a statistically signi�cant mean for �xTH, a
large number N of amplitude measurements has to be performed such that N � � > � �.

For further clari�cation let us return to Fig. 6.15. The variance of the phase space
distribution obtained from the depicted trajectory is equal to the displacement uncertainty
�x. If we denote by � the overall time of measurement of the phase space trajectory, it



6.5. Interferometric measurements of the oscillator's motion 109

can be readily understood that only for � ! 1 the correct value for �xTH is gained,
and that for short sampling times, where the oscillator's movement covers only a small
section of the phase space, �xTH will be correspondingly smaller, proportional to

p
� . In

contrast to this, a spectrum analyzer does not measure the variation of the amplitude,
but its absolute value, i.e. the distance of the points in Fig. 6.15 to the phase space origin.
This explains why Eq. 6.10 does not apply to the measurement shown in Fig. 6.17.

Note also that apart from these considerations for the quantum mechanically correct
calculation of the Brownian motion, a small correction term has to be added to Eq. 5.23
[246]. For the present experimental parameters this term, scaling with �h2, is negligible.

Sensitivity of the interferometer

The displacement sensitivity for the measurement of the oscillator motion, obtained from
the error signal noise 
oor, is 2 � 10�16 m/

p
Hz.1 The expected level from Eq. 5.17 isp

SSN = 3 � 10�19m/
p
Hz. Electronic noise is responsible for the di�erence, thus for

measurements of the oscillator's motion at frequencies away from the resonance this value
has to be improved considerably. The state of the art in the sensitivity of prototype small
scale gravitational wave interferometers is of the order of 10�18 m/

p
Hz [139, 201, 108, 98].

6.5.2 Remarks about the in
uence of thermal e�ects

One of the major problems in future experiments with our setup will probably not be the
detection of a light power dependent excitation of the oscillator, but the distinction, as
to which e�ect of the ones mentioned in section 5.4 actually causes this excitation, and,
even more important and not discussed so far, as to whether any observed e�ect may be
due to photothermal excitation [129, 152, 46].

Fig. 6.18 shows the absorption pro�le of the uncoated silicon. The sharp edge indi-
cates the bandgap energy of silicon which is just matched by the energy of the 1064 nm
photons. About one third of the laser's power is absorbed. This dissipated power leads to
heating e�ects whose in
uence on the oscillator's motion are di�cult to estimate in ma-
gnitude. In contrast to other experiments employing microoscillators, in which cantilever
or brigde structures were excited into a bending motion by the optothermal e�ect (Refs.
see Sec. 6.6.2), there is no direct torsional moment caused by thermal e�ects, which could
be transferred to the oscillator employed here. Nevertheless it was found experimentally
that it is possible to excite the oscillator by periodically heating via a copper coil �xed to
the Invar holder.

A possible experimental distinction between radiation pressure and thermal e�ects
could be realized by checking not only the power and frequency dependence of the re-
levant equations, but also the wavelength dependence. This way not only an additional
parameter could be investigated, but also due to the di�erent absorption for di�erent
wavelengths, thermal e�ects could be checked independently. Practically, this idea could

1Note that the noise 
oor of the cryogenic measurement in Fig. 6.17 is higher than the value given
here. This is due to intrinsic electronic noise of the SRS 780 FFT spectrum analyzer. To avoid this, a
reset of the spectrum analyzer by pressing the backspace button while booting should be made before
any serious measurement.



110 Chapter 6. Experiment II: Interferometric position measurements

0.3 1.05 1.8
Wavelength [µm]

T
ra

ns
m

is
si

on
 [a

.u
.]

Figure 6.18: Absorption pro�le of silicon. Measured is the transmission of a white light
source with an Anritsu optical spectrum analyzer.

be easily (...) implemented, employing the newly available widely tunable, compact and
stable cw-OPO light sources developed in our group [220].

Another possibility is, in case future coating runs turn out more successful, to com-
pare the data for oscillators with di�erent �nesse. Thermal excitation should decrease,
radiation pressure excitation should increase with improved re
ectivities of the Si-coating.

A third possibility would be, to estimate the photothermal excitation by shining a 1064
nm wave onto the oscillator's vane from the back side of the cavity, while the incoupling
side is used as before for locking and reading out the oscillator's displacement. With this
method, the strength of the photothermal excitation could be checked independently from
the cavity's circulating light power.

6.6 Related experiments of other groups

This chapter serves the purpose of setting our experimental e�orts and results in a more
general frame, relating it to achievements elsewhere. Besides that, during the time of this
thesis it was seen that the experimental implementation of radiation pressure e�ects, opto-
mechanical coupling, moving mirrors, laser interferometric measurements of Brownian
motion are also important subjects in experiments which are, considering the �nal goals,
not directly related to the one presented here, but nevertheless employ similar techniques
that might be helpful in the further progress of our experiment as well.

6.6.1 Directly comparable experiments

There are, to my knowledge, four directly comparable experiments. One in Hannover,
in the vicinity of the gravitational wave detection project (K. Danzmann), one in Paris,
in the quantum optics group at Jussieu (A. Heidmann), one test setup for an optical
transducer for resonant gravitational wave detection in College Park, Maryland (Y. Pang
and J.P.Richard) [176] and one as a part of the gravitational wave detection project at
the University of Western Australia (Blair) [247].

The Hannover group employs a pendulum quartz mirror with a resonance frequency
in the Hz regime, Q = 5 � 106. The goal is to detect the SQL at room temperature by
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measurements in the frequency domain o�-resonance. Due to seismic disturbances, laser
stabilization is extremely di�cult in such a setup. Furthermore, the higher temperature
leads to higher requirements for the mechanical Q-factor and the �nesse.

The Paris group uses the bulk oscillations of a silicate mirror. Advantages here are the
lack of disturbance by seismic e�ects at the resonances in the MHz regime, and that the
whole system is very compact. As in our case, it is planned to be mounted in a cryostat.
The primary goal in this experiment is the detection of squeezing in the re
ected light
�eld, due to the opto-mechanical interaction. Disavantages are the large spring constant
and the higher requirements for the mechanical Q-factor due to the higher frequency.

Both projects pro�t from the fact that well-known standard coating procedures can be
employed to reach a high �nesse. Nevertheless, since apart from theoretical considerations
[63, 86] and initial studies [249] both groups have not published anything so far, it is hardly
possible to estimate, which experimental design will be the most successful in the long
run.

The optical transducer by Pang and Richard has a �nesse of 70 000 but only a mo-
derate mechanical quality factor of 3000. Until now, it has not been cooled down and no
back action e�ects have been observed.

The australian project is probably the most advanced of the experimental setups
presented here. Its main di�erence from the other three setups is that it operates at
microwave instead of optical frequencies. The �nal setup of the experiment has not been
decided yet. Test setups involved as mechanical oscillators bulk oscillations of sapphire
bars (� =10 GHz), tuning fork resonances of slotted sapphire (� = 1 kHz, Q = 3 � 107
at 4K) and niobium (Q = 2 � 107 at 4K) bars, and membrane oscillations of a niobium
membrane (Q = 105). For the bulk oscillations in sapphire, Q-values of 108 were measured
[106]. Using whispering gallery modes in a monocrystalline sapphire dielectric resonator
classical radiation pressure e�ects were detected [44].

The investigation of back-action e�ects and Brownian motion in an electromechanical

sensor is described in [147].

6.6.2 Experiments employing similar techniques

Many experimental techniques can be learned and a variety of classical opto-mechanical
e�ects can be understood from previous experiments employing micromechanical oscilla-
tors in sensor technology. Thermal excitation of micromechanical silicon sensors has been
demonstrated in [209, 128]. Optical excitation and/or readout of micromechanical silicon
sensors have been described in [258, 3, 105, 244, 273, 285, 182, 129, 286, 254, 190, 43, 251].
All experiments employ interferometric detection methods via optical �bers, and oscilla-
tors of bridge or cantilever structure with low or medium mechanical Q. The excita-
tion mechanism does not involve radiation pressure, but rather optothermal coupling
[129, 286, 46]. The experiments of this category closest to ours make use of an optical
cavity, formed by the tip of the �ber used to excite the oscillator and the coated oscil-
lator itself [234, 190, 36] or by silicon microcavities [288] (see also [131, 82]). With such
setups, optical feedback due to the change in the intracavity circulating power induced
by the oscillator's motion, similar to the one described in section 5.4 has been observed
[131, 234, 36, ?, 82, 195].
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A similar category of experiments with weak forces acting on optically monitored
microoscillators is the high precision AFM detection [205, 160]. Using �ber optical rea-
dout techniques for silicon cantilevers, force sensors with attonewton precision have been
fabricated [236].

Micromechanical silicon oscillators that are especially designed to form optical mirrors
have been fabricated within the framework of optical switches at Texas Instruments [207]
(see also [99]). Since these devices are fabricated to exhibit a fast bistable response via
tilting of the micromirror instead of continuous oscillation, no values for the mechanical
Q-factor have been given. Switching times are 10 �s for the 1� angle.

As a last quite exotic but closely related experiment in biophysics I want to men-
tion the recently measured Brownian motion of hair bundles in the inner ear by laser
interferometry [56, 97]. Reaching the eardrum, the acoustic wave is transmitted through
mechanical and hydraulic linkages to a set of receptor cells, the hair cells in the spiraling
cochlea contained in the inner ear. Each hair bundle, situated at a speci�c place of the
basilar membrane, is resonant at a speci�c frequency, allowing thus a spatial separation
and distinction of di�erent frequencies of the incoming wave. Just as in our setup, the
Brownian motion of these mechanical receptors limits the degree of sensitivity at which
small forces (faint acoustic signals) can be detected (heard). Besides the detection of this
Brownian motion, in a series of beautiful experiments [202, 103, 97] it was shown, how
nonlinear mechanical properties, comparable to the ones shown in section 6.1.5, lead to
auditory illusions, such as the two-tone distortion, well-known in Baroque music theory.

6.7 Outlook part II

The further development of the experiment will most likely come in two stages:

The short term goals are achievable with the present setup. With an improvement of
the lock stability, which may comprise a vibration isolation for the cryogenic cavity, long
time stabilized operation at cryogenic temperatures and therewith a better understan-
ding of the Brownian noise measurements and measurements of the classical back action
should be possible. Probably the most di�cult task will be to thoroughly understand
the DC radiation pressure e�ects caused by the oscillator's motion and the in
uence of
photothermal excitation. In principle, DC radiation pressure e�ects may be circumvented
by detecting o�-resonance, however, for this a substantial increase in the interferometer's
sensitivity is necessary.

The medium term goal consists in manufacturing another set of mechanical oscillators
with new optical coatings. If the �nesse values can be improved by a factor of 10 or more,
the detection of radiation pressure damping and of quantum back action is in principle
possible. As mentioned before, the main di�culty will be the correct interpretation of
any measured light power dependence of the oscillator's motion.

Besides these more technical suggestions, there are certain aspects/features of the
experiments in part I and part II of this thesis, that may unify both experiments in the
more distant future.

The �rst is, to investigate the output light �eld of the movable mirror cavity via
tomographical methods. In the regime of quantum back action a �(3)-squeezing should be
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observable, which in the ideal case should have a non-Gaussian phase space distribution
[88, 63, 148, 261].

The second proposal is valuable only if the interferometer is operated in the back
action regime where it is limited by the quantum noise introduced by the light �eld. It
consists in increasing the interferometer's resolution by the injection of squeezed vacuum
proposed 1981 by Caves [40] and recalculated in [101, 143, 175]. Note also that due to
the squeezing e�ect of the interferometer in the back action regime, a resolution enhan-
cement can already be achieved by detecting not the intensity or the phase but a speci�c
quadrature of the output �eld [261].

The third proposal has its origin in the analogy of the light �eld's and the mechanical
oscillator's harmonic time evolution. This becomes evident in the similarity of the phase
space investigations of both experiments: The measurement of the oscillator's Brownian
motion in Fig. 6.15 is the exact classical analogue to the measurement of the thermal
state of the light �eld. A similar analogy was pointed out in section 6.1.5 and Ref. [206]
regarding the nonlinear e�ects in both systems.2 Since it is a present research endeavour
of several groups investigating techniques of micromachining to fabricate oscillators that
exhibit quantum mechanical behavior at cryogenic temperatures, tomographical characte-
rization of the mechanical noise properties of such oscillators via interferometric detection
would o�er a powerful tool of analyzation for such devices.

2See also [167] for a discussion of the relation between Brownian and quantum noise.
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*



7 Conclusion

If science has taught us anything, it is that the environment

is full of uncertainties.

Prince Charles

The thesis presents two experiments to investigate the quantum nature of light. In
the �rst part, a complete experimental characterization of the whole family of squeezed
states of the light �eld and of incoherent superpositions of coherent states is presented.
Average photon number and orientation of the states in phase space were accurately con-
trolled by macroscopic experimental parameters. The degree of squeezing amounted with
6 dB to the present state of the art in the world. It should be noted that the presented
measurements do not give a proof of the correctness of quantum mechanics or evidence
for the particle nature of light, since the laws of quantum mechanics had to be used for
the interpretation of the measured data. Nevertheless it is the �rst time that such de-
tailed experimental descriptions of non-classical states of the light �eld are being made
available. The quantum state reconstructions were performed in quasi real time, with a
data acquisition time of 200 ms and an analyzing time of �20 s. The results are in very
good agreement with theory. Among the special quantum mechanical features observed
were oscillations in the photon number distribution, amplitude-squeezed light with either
sub- or super-Poissonian photon statistics, bifurcation of the phase distribution, veri�ca-
tion of the number-phase uncertainty for squeezed states, higher order squeezing, loss of
coherence by phase di�usion, and the exponential decay of the �rst-order time correlation
function of the squeezed vacuum.

In the second part, a cryogenically cooled Fabry-Perot interferometer with a movable
mirror for high precision position measurements was built in order to observe the quantum
back action of a probe laser beam that monitors the movable mirror's position. Thermal
motion in the order of 10�14m of the high Q mirror oscillator at 4.5 K was detected. First
e�ects of opto-mechanical coupling were observed.

The outlooks for both experiments have been given separately in Sec. 3.11 and Sec. 6.7
respectively. It is hoped that the continuation of both projects will lead to the exploration
of yet unknown states of light and to the �rst evidence of the e�ect of the momentum
transfer of single quanta of light to a macroscopic object, thus elucidating new aspects of
the never completely comprehensible quantum world.
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